
nbtoolbelt Documentation
Release 2024.1.dev0

Tom Verhoeff

Jan 04, 2024

NBTOOLBELT ON COMMAND LINE

1 Introduction 3
1.1 nbtoolbelt . 3
1.2 nbconvert . 4
1.3 nbdime . 4

2 Installation 5
2.1 Dependencies . 5
2.2 Upgrading . 5
2.3 Uninstall . 6
2.4 Developers . 6

3 Usage Instructions 7
3.1 Command-Line Usage . 7
3.2 Notebook Validation . 14
3.3 Notebook Heads . 15
3.4 Notebook Dump . 17
3.5 Notebook Statistics . 20
3.6 Notebook Viewing . 25
3.7 Notebook Catenation . 26
3.8 Notebook Cleaning . 27
3.9 Notebook Execution . 29
3.10 Notebook Splitting . 34
3.11 Notebook Punching . 35
3.12 Configuration Files . 44
3.13 Library Usage . 49
3.14 API Documentation . 50
3.15 Adding Tools to nbtoolbelt . 50
3.16 Testing nbtoolbelt . 50
3.17 Change Log . 51

4 References 55

5 License and Source Code 57
5.1 Source Code . 57

6 Indices and tables 59

i

ii

nbtoolbelt Documentation, Release 2024.1.dev0

Version: 2024.1.dev0

NBTOOLBELT ON COMMAND LINE 1

nbtoolbelt Documentation, Release 2024.1.dev0

2 NBTOOLBELT ON COMMAND LINE

CHAPTER

ONE

INTRODUCTION

When you work with many Jupyter notebooks (e.g., when writing a book or teaching a course), you will
need tools to do bulk operations on notebooks.

nbtoolbelt is an integrated collection of tools to work with Jupyter notebooks.

We use nbtoolbelt together with Momotor, a highly-configurable LTI Tool Provider that automatically
processes digital content submitted in our Learning Management System (in our case, students submit
Jupyter notebooks), and returns various forms of feedback.

1.1 nbtoolbelt

With nbtoolbelt you get tools and libraries to

• validate notebooks (a wrapper for nbformat.validate())

• inspect head or tail cells of notebooks

• dump notebooks compactly on the terminal

• summarize notebooks, with statistics (stats)

• view notebooks in the browser

• catenate multiple notebooks into one notebook

• clean notebooks

• run notebooks, with pre/post cleaning (a wrapper for nbconvert.PreProcessor.execute())

• split notebooks

• punch notebooks (shoot holes in them, to produce frameworks useful for exercises)

The next sections briefly discuss some other tools.

3

https://jupyter.org/
https://momotor.org

nbtoolbelt Documentation, Release 2024.1.dev0

1.2 nbconvert

You can use Jupyter’s nbconvert on the command line:

jupyter nbconvert --to notebook --execute --allow-errors notebook.ipynb

to execute notebook.nbconvert.ipynb capturing the execution results, including cells that produce
errors. See the nbconvert documentation for further details.

1.3 nbdime

You can use nbdime for selectively showing, diffing, and merging of notebooks. For instance, when
you have installed nbdime, the command

nbshow -O nb.ipynb

will show the notebook without outputs of executed code cells. See the nbdime documentation for further
details.

4 Chapter 1. Introduction

https://nbconvert.readthedocs.io/en/latest/index.html
https://nbdime.readthedocs.io/en/latest/index.html

CHAPTER

TWO

INSTALLATION

To install nbtoolbelt from PyPI (the Python Package Index):

pip install nbtoolbelt

For users who install from a locally saved wheel:

pip install --no-index --find-links=<path/to/wheel/dir> nbtoolbelt

where <path/to/wheel/dir> is the (absolute or relative) path to the directory where you saved the
wheel. The wheel has a name of the form nbtoolbelt-*.whl.

2.1 Dependencies

nbtoolbelt depends on

• nbformat for notebook structure, and reading and writing of notebooks;

• nbconvert for notebook validation and execution;

• pandas and numpy for summary statistics in the stats tool.

For testing, it depends on pytest and pytest-mock.

2.2 Upgrading

To upgrade your nbtoolbelt installation, add the --upgrade flag to the above commands:

pip install --upgrade nbtoolbelt

pip install --upgrade --no-index --find-links=<path/to/wheel/dir> nbtoolbelt

5

https://pypi.python.org/

nbtoolbelt Documentation, Release 2024.1.dev0

2.3 Uninstall

To uninstall nbtoolbelt:

pip uninstall nbtoolbelt

2.4 Developers

To install for testing:

pip install nbtoolbelt[test]

6 Chapter 2. Installation

CHAPTER

THREE

USAGE INSTRUCTIONS

3.1 Command-Line Usage

Each tool of nbtoolbelt is invoked as a subcommand of nbtb:

nbtb <tool> ...

nbtb handles the following arguments itself:

• nbtb -version to obtain the current version, and exit

• nbtb -h or nbtb --help to get a usage message, and exit

• nbtb config to show the location of the embedded configuration file and the start-up configura-
tion

• nbtb config <tool> to show the start-up configuration for a specific tool

3.1.1 Processing Multiple Notebooks

When more than one notebook is given, or in verbose mode, the output related to each notebook nb.
ipynb is preceded by a header of the form

:::::::::::::
nb.ipynb
:::::::::::::

Some data is collected over all notebooks and aggregated (also see the option output-json to Write
JSON Output and the Examples below).

3.1.2 Common Tool Options

Many options, also for the tools themselves, have both a positive and a negated form. This is useful,
because option values can also be read from configuration files.

The following options apply to multiple tools (and many of them apply to all tools):

-h, --help show this help message and exit
-v, --verbose, -V, --no-verbose

verbose mode produces extra output (default: False)
-q, --quiet, -Q, --no-quiet

(continues on next page)

7

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

quiet mode produces less output (default: False)
--assert, --no-assert

assert mode: when processing fails, abort with exit
code 1 (default: True)

--validate, --no-validate
validate notebook before processing (default: False)

--run, --no-run run notebook before processing (default: False)
--inplace, --no-inplace

replace original notebooks with processing result
(default: False)

--write-files, --no-write-files
do write result files (default: True)

-n short for --no-write-files: do processing but do not
write result files (dry run)

--config FILE.json read configuration from FILE.json (in JSON)
--output-json FILE.json

write statistical output to FILE.json
-d, --debug debug mode produces diagnostic output (default: False)

Help

Each command provides its own help option:

• nbtb <tool> -h or nbtb command --help

The default option values shown, are after loading of the start-up configuration (see below).

Verbose Mode

Each command supprts verbose mode:

• nbtb <tool> -v or nbtb <tool> --verbose

In verbose mode, the tool’s option values are shown, and the total number of processed notebooks is
shown at the end, e.g.:

Notebooks processed: 2

Quiet Mode

Each command supprts quiet mode:

• nbtb <tool> -q or nbtb <tool> --quiet

In quiet mode, output is reduced to a minimum.

8 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

Assert Mode

In assert mode (option -a or --assert), whenever an error occurs during processing, all further pro-
cessing will be interrupted and the tool aborts.

Validate Mode

In validate mode (option --validate), each notebook is validated before processing.

Validation options can be set under the specific tool in a configuration file, but not on the command line.

Run Mode

In run mode (option --run), each notebook is run before processing (and after validation, if that applies).

Run options can be set under the specific tool in a configuration file, but not on the command line.

Inplace

For some tools (currently: clean and run), the option --inplace can be used to replace the input
notebook with the resulting notebook.

Write Files and Dry Run

In dry-run mode (option --no-write-files, or -n for short), all processing and reporting is done, but
resulting notebooks are not written to their destination file.

This allows one te experiment with options. In particular, this is useful in combination with verbose
mode.

Read Configuration File

Initial option settings can be read from a configuration file (option --config FILE.json).

At start up, each tool gathers an initial configuration as follows.

1. The configuration file embedded in the package is loaded.

2. If present, the configuration file /etc/nbtoolbelt.json is loaded on top of this.

3. Finally, if present, the configuration file ~/.nbtoolbelt.json is loaded on top of that. Here, ~
stands for the user’s home directory.

The invokation

$ nbtb config [tool]

will show which configuration files are loaded, and what the resulting configuration is.

Each tool can read options from a configuration file:

• nbtb <tool> ... --config file.json ...

3.1. Command-Line Usage 9

nbtoolbelt Documentation, Release 2024.1.dev0

The options from the configuration file override the preceding command-line options, and are, in turn,
overridden by any subsequent command-line options.

See Configuration Files for details about configuration files.

Write JSON Output

Most tools gather some statistics as they process notebooks. These statistics are printed as notebooks
are processed. For use with other tooling, such tool output can also be written to a file in JSON format
(option --output-json FILE.json).

This JSON output file contains one array, where

• item 0 concerns data aggregated over all notebooks that were processed;

• item i (i from 1) concerns data collected for the i-th notebook argument;

• each item is an object with further data appearing in various members, documented per tool;

• one common member is present with name "file_name", and the file’s name as value.

Debug Mode

In debug mode, diagnostic output is produced, and in particular, all option settings are shown.

3.1.3 Available Tools

The following tools are available:

• nbtb validate ... Notebook Validation

• nbtb head ... Notebook Heads

• nbtb dump ... Notebook Dump

• nbtb stats ... Notebook Statistics

• nbtb view ... Notebook Viewing

• nbtb cat ... Notebook Catenation

• nbtb clean ... Notebook Cleaning

• nbtb run ... Notebook Execution

• nbtb split ... Notebook Splitting

• nbtb punch ... Notebook Punching

10 Chapter 3. Usage Instructions

https://json.org/

nbtoolbelt Documentation, Release 2024.1.dev0

3.1.4 Examples

The following invocation shows

• the options loaded at start up from the various configuration files,

• the location where these files were found, and

• what the resulting configuration is:

$ nbtb config run
Loading configuration for nbrun from: /Users/.../nbtoolbelt/data/nbtoolbelt.
→˓json
Skipping configuration in: /etc/nbtoolbelt.json (not present)
Loading configuration for nbrun from: /Users/.../.nbtoolbelt.json
Configuration accumulated for nbrun:
allow_errors (bool): True
append_cell (bool): False
appended_cell (str): '# Automatically added code cell: lists all global␣

→˓names defined by this notebook.\n%whos'
assert (bool): True
clean_after (bool): True
clean_after_metadata (list): ['collapsed', 'scrolled']
clean_before (bool): True
clean_before_metadata (list): ['ExecuteTime', 'execution']
debug (bool): False
inplace (bool): False
interrupt_on_timeout (bool): True
ipc (str): ''
kernel_name (str): ''
notebooks (list): []
output_json (NoneType): None
quiet (bool): False
record_timing (bool): True
run (bool): False
run_path (str): ''
run_result_name (str): '-run'
streams_head (int): -1
streams_truncate_message (str): '*** Output truncated ***'
timeout (int): -1
validate (bool): False
verbose (bool): False
write_files (bool): True

The following invocation prints statistics for two notebooks, and writes JSON output to file
nbtb-stats-output.json.

$ nbtb stats short.ipynb test.ipynb --output-json nbtb-stats-output.json

::::::::::::::
short.ipynb
::::::::::::::

(continues on next page)

3.1. Command-Line Usage 11

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

Notebook metadata:
4.2 format version

python3 kernel
python 3.6.1 language

Cell types:
1 code
1 markdown
2 total cell count

::::::::::::::
test.ipynb
::::::::::::::
Notebook metadata:

4.2 format version
python3 kernel

python 3.6.1 language
Cell types:

12 code
7 markdown
19 total cell count

Totals
======

Cell types:
13 code
8 markdown
21 total cell count

The file nbtb-stats-output.json then contains:

[
{
"cell_types": {
"code": {
"25%": 3.75,
"50%": 6.5,
"75%": 9.25,
"count": 2.0,
"max": 12.0,
"mean": 6.5,
"min": 1.0,
"std": 7.7781745930520225,
"total": 13.0

},
"markdown": {
"25%": 2.5,
"50%": 4.0,
"75%": 5.5,
"count": 2.0,

(continues on next page)

12 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

"max": 7.0,
"mean": 4.0,
"min": 1.0,
"std": 4.242640687119285,
"total": 8.0

},
"total cell count": {
"25%": 6.25,
"50%": 10.5,
"75%": 14.75,
"count": 2.0,
"max": 19.0,
"mean": 10.5,
"min": 2.0,
"std": 12.020815280171307,
"total": 21.0

}
},
"file_count": 2,
"file_name": {
"count": 2,
"freq": 1,
"top": "short.ipynb",
"unique": 2

},
"notebook_metadata": {
"format version": {
"count": 2,
"freq": 2,
"top": "4.2",
"unique": 1

},
"kernel": {
"count": 2,
"freq": 2,
"top": "python3",
"unique": 1

},
"language": {
"count": 2,
"freq": 2,
"top": "python 3.6.1",
"unique": 1

}
}

},
{
"cell_types": {
"code": 1,

(continues on next page)

3.1. Command-Line Usage 13

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

"markdown": 1,
"total cell count": 2

},
"file_name": "short.ipynb",
"notebook_metadata": {
"format version": "4.2",
"kernel": "python3",
"language": "python 3.6.1"

}
},
{
"cell_types": {
"code": 12,
"markdown": 7,
"total cell count": 19

},
"file_name": "test.ipynb",
"notebook_metadata": {
"format version": "4.2",
"kernel": "python3",
"language": "python 3.6.1"

}
}

]

3.2 Notebook Validation

validate validates notebooks, using nbformat.validate(). This takes the notebook version into
account.

When the notebook is invalid, a message explains the problem.

Only in verbose mode, will validate report explicitly that a notebook is valid. Otherwise, it will quietly
continue.

14 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

3.2.1 Options

validate does not take any special options.

3.2.2 Examples

Check two notebooks, one valid and the other not, with verbose mode:

$ nbtb validate test.ipynb test-bad.ipynb -v

::::::::::::::
test.ipynb
::::::::::::::
test.ipynb notebook structure is valid

::::::::::::::
test-bad.ipynb
::::::::::::::
test-bad.ipynb notebook structure is INVALID

Additional properties are not allowed ('BAD_src' was unexpected)

Failed validating 'additionalProperties' in markdown_cell:

On instance['cells'][1]:
{'BAD_src': ['This is a notebook for testing purposes;\n',

'in particular, for testing the various scripts.\n',
'\n',
'It has a few formatted _MarkDown_ cells.\n',
'And some simple code cells, with various execution effects;\n

→˓',
'some (not only the last) has an error.\n',
'Various tags have been set.'],

'cell_type': 'markdown',
'metadata': {}}

Files processed: 2

3.3 Notebook Heads

head shows the first/last n lines of the first/last cell in Jupyter notebooks.

head is also a good tool to see how you can extend nbtoolbelt with another tool. Also see Adding
Tools to nbtoolbelt.

3.3. Notebook Heads 15

nbtoolbelt Documentation, Release 2024.1.dev0

3.3.1 Options

The following options are supported by head:

-# NUMBER, --number NUMBER
number of head/tail lines to show of first/last cell;
< 0 for tail (default: 5)

Number

By default, head shows the first 5 lines of the first cell (or fewer, if the cell is shorter). The number
option determines the desired number of lines, and whether this is from the head of the first cell (when
the number is positive), or from the tail of the last cell (when the number is negative). The actual number
of lines shown is smaller, when the cell has fewer lines than desired.

3.3.2 Examples

Show head of notebook test.ipynb:

$ nbtb head test.ipynb
Test Notebook

This is a notebook for testing purposes;
in particular,
for testing the various scripts.

Show 10 tail lines in last cell of notebook test.ipynb:

$ nbtb head -# -10 test.ipynb -v
Options for nbhead:
Show last 10 source lines of last cell

::::::::::::::
test.ipynb
::::::::::::::
Last
cell
with
more
than
five
lines.

Notebooks processed: 1

The last cell apparently contains fewer than 10 lines.

16 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

3.4 Notebook Dump

dump shows notebook and cell information, and cell sources of Jupyter notebooks in a compact way on
stdout (more compact than nbshow of the nbdime package).

Which elements of a notebook are dumped can be selected through options. The output format can also
be adjusted via options.

3.4.1 Options

The following options are supported by dump:

-g, --notebook-info, -G, --no-notebook-info
show global notebook information (default: True)

-c, --cell-info, -C, --no-cell-info
show cell information (default: True)

-s, --sources, -S, --no-sources
show cell sources (default: True)

-t TYPES, --cell-types TYPES
comma-separated list of cell types to dump (default:
'markdown,code,raw')

-p STRING, --prefix STRING
pre/postfix for information lines (default: '=====')

-i INT, --indent INT indentation level for source lines (default: 2)
-l, --line-numbers, -L, --no-line-numbers

show source line numbers (default: False)
-e INT, --cell-spacing INT

number of empty lines between cells (default: 0)

3.4.2 Examples

A dump of notebook short.ipynb in verbose mode:

$ nbtb dump -v short.ipynb
Options for nbdump:
Dump notebook info: True
Dump cell info: True
Dump cell sources: True
Dump cell types: markdown,code,raw
Prefix for information lines: =====
Source line indentation level: 2
Show source line numbers: False
Cell spacing lines: 0

::::::::::::::
short.ipynb
::::::::::::::
===== nbformat: 4.2 | kernel: python3 | language: python 3.6.1 =====
===== cells: 2 =====
===== cell 0: markdown | metadata: collapsed =====

(continues on next page)

3.4. Notebook Dump 17

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

Short Notebook for Testing

* **Bold**
* _Italic_
* `Typewriter`
* $e^{\pi i} + 1 = 0$

===== cell 1: code | outputs: 2 =====
print(6 * 7)
1 + 1

Notebooks processed: 1

A dump that shows notebook and cell information only (no sources):

$ nbtb dump -S test.ipynb
===== nbformat: 4.2 | kernel: python3 | language: python 3.6.1 =====
===== cells: 19 | metadata: celltoolbar,toc =====
===== cell 0: markdown =====
===== cell 1: markdown =====
===== cell 2: markdown =====
===== cell 3: code | metadata: collapsed | outputs: 1 =====
===== cell 4: code | metadata: collapsed | outputs: 1 =====
===== cell 5: code | metadata: collapsed | outputs: 1 =====
===== cell 6: code | outputs: 1 =====
===== cell 7: code | outputs: 2 =====
===== cell 8: code | outputs: 2 =====
===== cell 9: markdown | tags: YourTurn =====
===== cell 10: code | metadata: scrolled | outputs: 1 =====
===== cell 11: code | metadata: collapsed =====
===== cell 12: code | metadata: scrolled | tags: YourTurn | outputs: 1 =====
===== cell 13: code | metadata: collapsed =====
===== cell 14: markdown =====
===== cell 15: code | tags: YourTurn,Test | outputs: 2 =====
===== cell 16: code | metadata: collapsed =====
===== cell 17: markdown | attachments: 1 =====
===== cell 18: markdown =====

A dump of MarkDown sources only, without indentation:

$ nbtb dump -G -C -t markdown -i 0 test.ipynb
Test Notebook

This is a notebook for testing purposes;
in particular,
for testing the various scripts.

It has a few formatted _MarkDown_ cells.
And some simple code cells, with various execution effects;
some (not only the last) has an error.
Various tags have been set.

(continues on next page)

18 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

A Section

Demonstrating **bold face**.
This one has a \LaTeX formula: $e^{\pi i} + 1 = 0$.
Print the first one hundred numbers, their squares, and their cubes.
Produce a line plot of `df`.
![jupyter.png](attachment:jupyter.png)
Last
cell
with
more
than
five
lines.

A dump of code cells without global notebook information, without indentation, with cell spacing 1, and
info prefix #####:

$ nbtb dump -G -t code -i 0 -l 1 -p '#####' test.ipynb
cell 3: code | metadata: collapsed | outputs: 1
print([i ** 3 for i in range(6)]) # output as stream in stdout

cell 4: code | metadata: collapsed | outputs: 1
NameError
undefined

cell 5: code | metadata: collapsed | outputs: 1
6 * 7 # output as execution result

cell 6: code | outputs: 1
6 / 0 # ZeroDivisionError

cell 7: code | outputs: 2
stdout and execution result
print('Hello, World!')
'Thanks'

cell 8: code | outputs: 2
import sys
print('Message on stdout')
print('Message on stderr', file=sys.stderr)

cell 10: code | metadata: scrolled | outputs: 1
for i in range(100): # output as stream in stdout

print(i, i ** 2, i ** 3)

cell 11: code | metadata: collapsed
import pandas as pd

cell 12: code | metadata: scrolled | tags: YourTurn | outputs: 1
(continues on next page)

3.4. Notebook Dump 19

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

df = pd.DataFrame([3, 1, 4, 1, 5, 9])
df

cell 13: code | metadata: collapsed
import seaborn # commented out to avoid depencency on seaborn
%matplotlib inline # commented out to avoid dependcy on matplotlib

cell 15: code | tags: YourTurn,Test | outputs: 2
df.plot(kind='line') # commented out to avoid dependency on matplotlib

cell 16: code | metadata: collapsed
print(42) # output to be deleted afterwards

A dump of a notebook with source line numbers:

$ nbtb dump -l short.ipynb
===== nbformat: 4.2 | kernel: python3 | language: python 3.6.1 =====
===== cells: 2 =====
===== cell 0: markdown | metadata: collapsed =====

1| # Short Notebook for Testing
2|
3| * **Bold**
4| * _Italic_
5| * `Typewriter`
6| * $e^{\pi i} + 1 = 0$

===== cell 1: code | outputs: 2 =====
1| print(6 * 7)
2| 1 + 1

3.5 Notebook Statistics

stats can show the following statistics:

• summary of required notebook metadata (always shown)

• list of other notebook metadata fields

• list of additional notebook fields (outside metadata; should normally not be present)

• cell statistics:

– count per cell type (markdown, code, raw), and their total

– size statistics for cell sources for all cells, and for markdown, code, and raw cells separately:

∗ number of empty cells

∗ total number of lines (non-empty), words, characters (non-whitespace).

– count per cell metadata field, and

∗ count per tag in tags metadata

– count attachments, and

20 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

∗ count per attachment MIME type

– count outputs for code cells (note that there can be multiple outputs per code cell)

∗ count of code cells without output

∗ count per output type (execute_result, stream, display_data, error), and their
total

∗ count per stream (stdout, stderr)

∗ count per error (by ename)

– execution counts for code cells:

∗ count executed

∗ count executed in linear order

∗ maximum execution count (max # in In[#])

∗ count not executed

∗ count not executed in linear order

– list of additional cell fields (outside metadata; should normally not be present)

Use options to select reporting of specific statistics.

3.5.1 Options

The following options are supported by stats:

--all, --no-all show all statistics (default: False)
-c, --cell-types, -C, --no-cell-types

count cell types (default: True)
-s, --sources, -S, --no-sources

statistics for cell sources (default: False)
-m, --metadata, -M, --no-metadata

show notebook metadata and count cell metadata
(default: False)

-t, --tags, -T, --no-tags
count individual cell tags (default: False)

-a, --attachments, -A, --no-attachments
count cell attachment MIME types (default: False)

-o, --outputs, -O, --no-outputs
count code cell outputs (default: False)

--streams, --no-streams
count code cell output stream names (default: False)

-e, --errors, -E, --no-errors
count code cell error names (default: False)

-x, --execution, -X, --no-execution
statistics for code execution (default: False)

--extra, --no-extra report extra fields outside metadata (default: False)

3.5. Notebook Statistics 21

nbtoolbelt Documentation, Release 2024.1.dev0

3.5.2 JSON Output

See Write JSON Output for general information about JSON output.

stats produces the following members in the JSON output, where (*) refers to details below:

Name Value
"notebook_metadata" object with required notebook metadata
"notebook_other_metadata"object with 1 for each other notebook metadata field
"notebook_extra_fields"object with 1 for each extra notebook fields
"cell_types" object with count per cell type (*)
"sources" object with empty/line/word/char/total source counts per cell

type and totals (*)
"cell_metadata" object with counts of cell metadata fields
"cell_attachments" object counts of cells attachments per type and totals
"code_execution" object with counts of for cell execution (*)
"code_outputs" object with counts of code cell output per type and totals (*)
"cell_extra" object with count for each extra cell field

Details for "cell_types":

Name Value
"markdown" count of markdown cells
"code" count of code cells
"raw" count of raw cells
"total cell count" count of all cells

Details for "sources":

Name Value
"CT source W" count of W for cell type CT
"CT empty sources" count of empty sources for cell type CT

Where cell type CT is on of markdown, code, raw, or total, and what W is one of chars, lines, words.

Details for "code_execution":

Name Value
"executed" count of executed code cells
"executed in linear
order"

count of code cells executed in linear order from be-
ginning

"maximum In[#]" maximum execution code of executed code cells
"not executed" count of code cells not executed
"not executed in linear
order"

count of code cells not executed in linear order from
beginning

22 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

Details for "code_outputs":

Name Value
"empty outputs" count of code cells without output
"display_data" count of display_data output
"error" count of error output (total)
"error E" count of error output with exception E
"execute_result" count of code cells with an execution result as output
"stream" count of code cells with stream output (total)
"stream S" count of code cells with stream S output
"total output count" count of all output items (total over all code cells)

Note that each code cell can have zero or more output items in its outputs array.

3.5.3 Examples

Report required notebook metadata and cell types for two notebooks:

$ nbtb stats short.ipynb test.ipynb --output-json nbtb-stats-output.json

::::::::::::::
short.ipynb
::::::::::::::
Notebook metadata:

4.2 format version
python3 kernel

python 3.6.1 language
Cell types:

1 code
1 markdown
2 total cell count

::::::::::::::
test.ipynb
::::::::::::::
Notebook metadata:

4.2 format version
python3 kernel

python 3.6.1 language
Cell types:

12 code
7 markdown
19 total cell count

Totals
======

Cell types:
13 code

(continues on next page)

3.5. Notebook Statistics 23

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

8 markdown
21 total cell count

All statistics for one notebook:

$ nbtb stats --all test.ipynb
Notebook metadata:

4.2 format version
python3 kernel

python 3.6.1 language
Other notebook metadata fields:

1 celltoolbar
1 toc

Cell types:
12 code
7 markdown
19 total cell count

Cell sources:
561 code source chars
20 code source lines

115 code source words
454 markdown source chars
21 markdown source lines
89 markdown source words

1015 total source chars
41 total source lines

204 total source words
Cell metadata fields:

6 collapsed
2 scrolled
1 tag Test
3 tag YourTurn
3 tags

Cell attachments:
1 image/png
1 total attachments count
1 total count of cells with attachments

Code cell outputs:
3 code cells without outputs
1 display_data
2 error
1 error NameError
1 error ZeroDivisionError
4 execute_result
5 stream
1 stream stderr
4 stream stdout
12 total output count

Code cell execution:
11 executed

(continues on next page)

24 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

3 executed in linear order
15 maximum In[#]
1 not executed
9 not executed in linear order

3.6 Notebook Viewing

view generates HTML from notebooks, and opens them in your browswer. It uses the nbconvert.
HTMLExporter and in-lines embedded attachments to make them visible.

3.6.1 Result File Name

The resulting HTML for viewing notebook nb.ipynb is written to nb-view.html, unless the
--inplace options is used, in which case it is written to nb.html.

The result name addition can be adjusted in the configuration file by setting view_result_name; see
Configuration Files.

3.6.2 Options

The following options are supported by view:

-t NAME, --template NAME
template to use (default: classic)

-b, --browser, -B, --no-browser
open html in browser (default: True)

-w, --wait_delete, -W, --no-wait_delete
interactively wait for user confirmation to delete
html files (default: False)

Template File

The option template-file is deprecated, because nbconvert 6 has a template mechanism that uses
directories instead of single template files.

Template

By default, view uses the classic template.

The template option can be used to select another template. For instance, nbconvert supports the
basic template, without any CSS and JavaScript, and lab to give you a JypterLab look. Also see
nbconvert documentation for HTML output.

Note that Jupyter notebook extensions provide additional templates, such as toc2.tpl for an enhanced
Table of Contents. However, these templates can no longer be used, since they have not been converted
to the nbconvert 6 style.

3.6. Notebook Viewing 25

https://nbconvert.readthedocs.io/en/latest/usage.html#html
https://github.com/ipython-contrib/jupyter_contrib_nbextensions

nbtoolbelt Documentation, Release 2024.1.dev0

Browswer

By default, view opens the generated HTML in a new tab in your default browser.

The browser option can be used to override this behavior.

Wait-Delete

By default, view exits after generating HTML files, and opening them in your browser. The generated
HTML files are not deleted.

The wait-delete option makes view wait after generating the HTML files, until the user confirms
deletion of the HTML files:

$ nbtb view -w test.ipynb
Delete created html files ([y]/n)? y
Deleting: test-view.html

3.7 Notebook Catenation

cat catenates the cells of multiple notebooks into a single notebook. The resulting notebook takes its
notebook-level properties from the first notebook.

This tool can be used to prepend and append cells to a notebook (also see the append-cell option of
the run tool). Prepended cells can provide (re)definitions, and appended cells can show further output.

3.7.1 Educational Use

In an educational setting, it can be useful to redefine the built-in function input() to either be blocked:

def input(*args, **kwargs):
import sys
print('input() is forbidden in notebooks', file=sys.stderr)
sys.exit(1)

Or to deliver strings read from a file:

def __yield_from_file(file_name):
with open(file_name) as f:

yield from f.readlines()

def input(prompt=None, __gen=__yield_from_file('input.txt')):
if prompt:

print(prompt, end='')
line = next(__gen)
suppress terminating end-of-line
if line and line[-1] == '\n':

return line[:-1]
return line

By putting this code in a notebook, it can be prepended to every student notebook, via cat.

26 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

3.7.2 Result File Name

The result of catenating notebooks nb.ipynb ... is written to nb-cat.ipynb (that is, the name of the
first notebook argument is used), unless the option --inplace is applied, in which case the result is
written to nb.ipynb.

The result name addition can be adjusted in the configuration file by setting cat_result_name; see
Configuration Files.

3.7.3 Options

cat does not have any tool-specific options.

3.7.4 JSON Output

See Write JSON Output for general information about JSON output.

cat produces the following members in the JSON output:

Name Value
"cell_types" object with counts per cell type (see Notebook Statistics)

Note that members are absent when count is zero.

3.8 Notebook Cleaning

clean can delete elements from Jupyter notebooks:

• selected notebook-level non-required metadata fields

• selected cell-level metadata fields

• selected cell tags

• empty cells

• all outputs of code cells

When code cell outputs are cleaned, also the execution counts are cleaned (reset to not-executed).

3.8.1 Result File Name

The result of cleaning notebook nb.ipynb is written to nb-clean.ipynb, unless the option --inplace
is applied.

The result name addition can be adjusted in the configuration file by setting clean_result_name; see
Configuration Files.

3.8. Notebook Cleaning 27

nbtoolbelt Documentation, Release 2024.1.dev0

3.8.2 Options

The default behavior is to clean nothing. The following options are supported by clean:

-g FIELDS, --global FIELDS
comma-separated list of fields to remove from metadata
of notebook (default: '')

-m FIELDS, --metadata FIELDS
comma-separated list of fields to remove from metadata
of all cells (default: '')

-t TAGS, --tags TAGS comma-separated list of tags to remove from all cells;
use '-m tags' to remove all tags (default: '')

-e, --empty-cells, -E, --no-empty-cells
delete cells with empty source, i.e. with whitespace
only (default: False)

-o, --outputs, -O, --no-outputs
clean all outputs from all code cells (default: False)

3.8.3 JSON Output

See Write JSON Output for general information about JSON output.

clean produces the following members in the JSON output:

Name Value
"global F" count of global metadata fields F cleaned (0 or 1)
"cell F" count of cell metadata fields F cleaned
"tag T" count of cell tags T cleaned
"empty_cells" count of empty cells cleaned
"outputs" count of cell outputs cleaned

Note that members are absent when count is zero.

3.8.4 Examples

Remove all collapsed and scrolled metadata fields from cells:

$ nbtb clean -m collapsed,scrolled test.ipynb -v
Options for nbclean:
Deleting cell metadata fields: ['collapsed', 'scrolled']
Clearing outputs from all code cells

::::::::::::::
test.ipynb
::::::::::::::
Counts:

6 cell collapsed
2 cell scrolled

(continues on next page)

28 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

9 outputs cleaned
Files written: {'test-clean.ipynb'}

Notebooks processed: 1

3.9 Notebook Execution

run executes all codes cells in the notebook, from first to last, comparable to Kernel > Restart &
Run All in the Jupyter Notebook Editor. Each cell is executed separately, in the context of the global
state, which is empty at the start and updated as cells execute.

Unless in quiet mode, run will report some execution statistics on stdout:

• number of code cells

• number of executed code cells

• number of executions that resulted in an error

3.9.1 Result File Name

The result of running notebook nb.ipynb is written to nb-run.ipynb, unless the option --inplace is
applied.

The result name addition can be adjusted in the configuration file by setting run_result_name; see
Configuration Files.

3.9.2 Options

The following options are supported by run:

-e, --allow-errors, -E, --no-allow-errors
continue on errors (default: True)

-b, --clean-before, -B, --no-clean-before
clean code output before running (default: True

-a, --clean-after, -A, --no-clean-after
clean code metadata after running (default: True)

-k KERNEL_NAME, --kernel-name KERNEL_NAME
name of kernel to use, e.g. python3; for kernel
specified in notebook; default: '')

-p RUN_PATH, --run-path RUN_PATH
working directory for execution ;"" for current
working directory (default: '')

-t TIMEOUT, --timeout TIMEOUT
timeout time in seconds per cell; -1 for unlimited
(default: -1)

-i, --interrupt-on-timeout, -I, --no-interrupt-on-timeout
interrupt execution on timeout (default: False)

-r, --record-timing, -R, --no-record-timing
(continues on next page)

3.9. Notebook Execution 29

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

record execution times (default: True)
-w, --append-cell, -W, --no-append-cell

append special code cell (default: '# Automatically
added code cell: lists all global names defined by
this notebook.\n%whos') before executing notebooks
(default: False)

--streams-head STREAMS_HEAD
limit output streams to a maximum number of lines per
cell; -1 for unlimited (default: 1000)

Dry Run

By default, the result of executing notebook nb.ipynb is written to nb-run.ipynb, unless the dry-run
option is in effect.

The dry-run option suppresses writing of the resulting notebook. It does not suppress execution.

Allow Errors

By default, run executes all code cells, even when errors occur. Such errors typically give rise to an
error element among the cell outputs in the notebook (which the Jupyter Notebook Editor shows on a
red background).

The no-allow-errors option makes run abort execution at the first error. Error details are then reported
on stderr.

Timeout

By default, run does not limit the execution time. The timeout option sets a limit in seconds on the
execution time per cell. Use -1 as value to remove the limit.

Interrupt on Timeout

By default, run interrupts the kernel with a KeyboardInterruptwhen a timeout occurs (which does not
stop further execution when allowing errors). When not interrupting on timeout, run aborts execution
with a CellTimeoutError when a timeout occurs (which stops further execution even when allowing
errors).

Record Timing

By default, run records cell execution times in the resulting cell metadata under the key execution. See
nbformat, Cell metadata for details.

30 Chapter 3. Usage Instructions

https://nbformat.readthedocs.io/en/latest/format_description.html?highlight=execution#cell-metadata

nbtoolbelt Documentation, Release 2024.1.dev0

Kernel Name

By default, run uses the kernel associated with the notebook (as specified in its metadata > kernel
attribute). The kernel_name option overrides this default behavior and sets a specific kernel. Typical
choices are

• python2

• python3

Run Path

By default, the notebook is executed in the current working directory where the tool was invoked. The
run-path option sets a specific path to be the working directory.

Clean Before

By default, run cleans the notebook before execution:

• the outputs of all code cells are removed,

• their execution counts are cleared, and

• ExecuteTime and execution metadata is removed.

This ensures that the the notebook is run in a clean environment. In particular, when executing until the
first error, no spurious outputs and metadata from a previous run will be left in the notebook.

The not-before option suppresses this pre-cleaning step.

Clean After

By default, run cleans the notebook after execution:

• the collapased and scrolled metadata are removed from all code cells

Currently, it appears that execution through nbconvert will make all output cells collapsed and scrolled.
When such a notebook is subsequently opened in the Jupyter Notebook Editor, no outputs will be visible,
until they are actively opened by the user (either by clicking to the left of the output area of a cell, or
through the Cell menu to toggle the output cell state.

The not-after option suppresses this post-cleaning step.

Append Cell

The append-cell option appends to the notebook (before execution) a code cell containing:

Automatically added code cell: lists all global names defined by this␣
→˓notebook.
%whos

This will show an overview of all names defined a the global level of the notebook, their types, and some
data/info. Also see the example below.

3.9. Notebook Execution 31

nbtoolbelt Documentation, Release 2024.1.dev0

The content of the appended code cell can be changed in a configuration file.

Using the cat tool, you can prepend and append entire notebooks.

Streams Head

The streams-head option will limit the amount of data in output streams (both stdout and stderr) that is
written to the resulting notebook, by showing only the head. The number of lines to show is a parameter
to this option (use -1 for unlimited output). It applies per cell.

This option serves as a protection to generate excessively large notebooks, when the input notebook
contains ‘overzealous’ code. An example of ‘overzealous’ code is an infinite loop that contains a call to
print.

3.9.3 JSON Output

See Write JSON Output for general information about JSON output.

run produces the following members in the JSON output:

Name Value
"code cells" count of code cells
"executed" count of executed code cells
"with errors" count of executed code cells with errors

Note that members are absent when count is zero.

3.9.4 Examples

Example output when running a single notebook without options:

$ nbtb run test.ipynb
Execution statistics:

12 code cells
12 executed
2 with errors

The execution result is written to test-run.ipynb.

Example output when running to first error in verbose mode without writing the result:

$ nbtb run -E tool-faq.ipynb test.ipynb -v -n
Dry run (no files written)
Options for nbrun:
Cleaning code output and ['ExecuteTime', 'execution'] metadata before␣

→˓running
Timeout: unlimited
Kernel name: from notebook
Working dir: current directory
Stopping at first error

(continues on next page)

32 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

Cell execution does not time out
Recording execution times
Not appending code cell with %whos
Cleaning ['collapsed', 'scrolled'] code metadata after running
Not limiting output streams

::::::::::::::
short.ipynb
::::::::::::::
Execution statistics:

1 code cells
0 code cells with empty source
1 executed
0 with errors

No file written

::::::::::::::
test.ipynb
::::::::::::::

Notebooks processed: 1
Processing of "test.ipynb" failed (CellExecutionError): An error occurred␣
→˓while executing the following cell:

NameError
undefined

NameError: name 'undefined' is not defined

Tool 'run' aborted.

Here is an example with the append-cell (-w) option. The execution result is written to test-run.
ipynb. Next, we use nbshow to inspect the output of the last cell (Note that nbshow is part of the nbdime
package; see documentation of nbdime.)

$ nbtb run -w test.ipynb
Execution statistics:

13 code cells
0 code cells with empty source
13 executed
2 with errors

$ nbshow test-run.ipynb | tail -n -16
code cell 19:

execution_count: 13
source:
Automatically added code cell: lists all global names defined by this␣

→˓notebook.
%whos

(continues on next page)

3.9. Notebook Execution 33

https://nbdime.readthedocs.org/

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

outputs:
output 0:

output_type: stream
name: stdout
text:
Variable Type Data/Info

df DataFrame 0\n0 3\n1 1\n2 4\n3 1\n4 5\n5 9
i int 99
pd module <module 'pandas' from '/o<...>ages/pandas/__

→˓init__.py'>
sys module <module 'sys' (built-in)>

3.10 Notebook Splitting

split splits Jupyter notebooks by writing each cell type (markdown, code, and raw) to its own notebook.

Unless in quiet mode, split shows cell counts: markdown, code, raw, and total.

3.10.1 Result File Names

The results of splitting notebook nb.ipynb are named:

• nb-markdown.ipynb

• nb-code.ipynb

• nb-raw.ipynb

When a particular type of cell does not occur, that result notebook is not written.

The result name additions can be adjusted in the configuration file by setting
split_markdown_result_name, split_code_result_name, and split_raw_result_name;
see Configuration Files.

3.10.2 Options

The following options are supported by split:

-t TYPES, --split-cell-types TYPES
comma-separated list of cell types to split (default:
'markdown,code,raw')

34 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

3.10.3 JSON Output

See Write JSON Output for general information about JSON output.

split produces the following members in the JSON output:

Name Value
"CT" count of cells with type CT

Cell types distinguished: markdown, code, raw

3.10.4 Examples

Split notebook test.ipynb in verbose mode without writing the results:

$ nbtb split test.ipynb -v -n
Dry run (no files written)
Options for nbsplit:
(None)

::::::::::::::
test.ipynb
::::::::::::::
Split cell statistics:

12 code
7 markdown
0 raw
19 total

No files written

Notebooks processed: 1

3.11 Notebook Punching

punch punches holes in notebooks, supporting two different approaches to defining the holes (see below).
The resulting holes can be filled either with fixed content, or from a source notebook (see options fill
and source).

punch can also collect the content that has been punched out, the so-called chads (see option chads).

3.11. Notebook Punching 35

nbtoolbelt Documentation, Release 2024.1.dev0

3.11.1 Result File Names

The result of punching notebook nb.ipynb is written to nb-punched.ipynb, and the content that got
punched out, the so-called chads, is written to nb-chads.ipynb.

The result name additions can be adjusted in the configuration file by setting
punch_punched_result_name and punch_chads_result_name; see Configuration Files.

3.11.2 Holes and Filling

The two ways of defining holes are:

• Via tags: any cell with a tag contained in the trigger set (see option tags), will be punched as a
whole.

• Via marker lines: any source content appearing between begin and end marker lines will be
punched.

Via Tags

This approach is selected by providing a list of tags to the tags option.

In the tags approach, punch removes the source content of selected cells. No cells will be removed; only
their source content will be emptied.

Cells are selected through the presence of cell metadata tags in a trigger set, defined with the option tags.

When the source of a code cell is cleared, also its outputs and execution count are cleared.

Note that nbgrader uses the tag YourTurn to mark cells where students write their solutions; see doc-
umentation of nbgrader.

Via Marker Lines

This approach applies when no tags are given (the default).

Lines to be punched are marked by enclosing them between begin and end marker lines.

Such marker lines are recognized by a special character sequence (default: #// for all cell types; this can
be overridden per cell type in the configuration file). Marker lines are parsed through a regular expression
(per cell type) into

• a transition, to distinguish begin and end marker lines (from outside to inside, and from inside to
outside);

• a label, to distinguish holes, especially needed when filling them from a source notebook;

• an optional description, mainly as documentation, or as hint to students.

36 Chapter 3. Usage Instructions

https://nbgrader.readthedocs.org/
https://nbgrader.readthedocs.org/

nbtoolbelt Documentation, Release 2024.1.dev0

Replacement Content

When filling, the default replacement content is defined in the embedded configuration file as

{
"filling": {
"markdown": "\n<div class='alert alert-warning' role='alert'>Replace this␣

→˓line by your text.</div>\n",
"code": "\n# ===== =====> Replace this line by your code. <===== ===== #\n

→˓",
"raw": "\n% ===== =====> Replace this line by your content. <===== =====\n

→˓"
}

}

These replacement strings can be redefined in your own configuration file; see Configuration Files.

In the replacement content, two substitutions are done:

• {label} is replaced by the hole’s label,

• {description} is replaced by the hole’s description.

This is especially useful with the no-keep-marker-lines option.

With the source option, the replacement content is taken from a source notebook. This can only be used
with marker lines. The replacement chad in the source notebook is selected by matching the labels. In
this case, there can be a mismatch between cell types in the hole to be filled and in the selected source
chad to be used as filling.

punch ensures that content from source cells ends up in cells of the same type in the punched notebook.
In particular, when the source option is not used, the punched notebook will have the same cells as the
input notebook, but possibly with different content inside the holes.

The following diagram illustrates how punch uses cells and cell source content when filling from a source
notebook.

3.11. Notebook Punching 37

nbtoolbelt Documentation, Release 2024.1.dev0

Some notes:

• The number of cells in the source chad and input hole can differ. Both have at least one cell.

• The begin and end marker line can be in the same cell (in which case cells[0] and cells[-1]
are identical). In fact, a cell can contain multiple holes.

• The cell types of the begin cells can differ, and so can the types of the end cells. For instance, the
hole could start with a code cell, whereas the replacement source chad starts with a markdown cell.
In such cases, punch will split cells as necessary.

• All cell metadata, attachments, and outputs are carried along.

3.11.3 Educational Use

punch is intended for use in an educational setting. The teacher prepares a master notebook A with
questions and tagged or marked solutions (see diagram).

Using punch, the teacher then produces a punched notebook B (a framework, in software terms), that
can be given to students, who need to fill the holes. The teach can also produce a chads notebook C, with
just the solutions, that can be given to assistants. Students deliver their completed notebooks D. When
punching a student notebook D, the chads notebook E will just contain the student’s work.

With reference to the diagram, we have:

• A = master.ipynb with questions and solutions

• nbtb punch mater.ipynb --chads produces

• B = master-punched.ipynb

• C = master-chads.ipynb

• student produces

• D = student.ipynb delivered by student (from master-punched.ipynb with work in holes)

• nbtb punch student.ipynb --chads produces

38 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

• E = student-chads.ipynb with just the student’s work

punch can optionally fill the punched holes either with fixed content (taken from the configuration file),
or (in the case of the approach via marker lines) with content taken from another source notebook with
correspondingly marked content.

The teacher can also prepare a test notebook G, with correspondingly marked holes, and punch it while
using the student’s notebook D as source to fill the holes. In that way, the student’s work is copied into the
test notebook in the appropriate places. The resulting notebook H can be executed to provide feedback.

punch can also be used to transfer the solutions from the master notebook A into the test notebook G,
obtaining a verification notebook F.

With reference to the diagram, we have:

• F = test_frame.ipynb` a test notebook to assess work

• nbtb punch test_frame.ipynb --fill --source master.ipynb produces

• G = test_frame-punched.ipynb tes notebook with teacher solutions for verification

• nbtb punch test_frame.ipynb --fill --source student.ipynb produces

• H = test_frame-punched.ipynb test notebook with student work

When filling the template notebook B with the solutions (chads) C, the original master notebook A is
obtained:

• nbtb punch master-punched.ipynb --fill --source master-chads.ipynb produces

• master-punched-punched.ipynb which is equivalent to master.ipynb

3.11.4 Options

The following options are supported by punch:

-t TAGS, --tags TAGS comma-separated list of tags that trigger removal of
source from cells; e.g. YourTurn (default: '')

-p, --punched, -P, --no-punched
whether to write punched notebook (default: True)

-c, --chads, -C, --no-chads
whether to write chads notebook (default: False)

-m, --keep-marker-lines, -M, --no-keep-marker-lines
whether to keep marker lines (default: True)

-f, --fill, -F, --no-fill
whether to fill punched holes (default: False)

-s PUNCH_SOURCE, --source PUNCH_SOURCE
source notebook for filling holes; implies --fill
(default: "")

-l, --list, -L, --no-list
list marker labels and descriptions (default: False)

-e, --allow-errors, -E, --no-allow-errors
continue on parsing errors in marker lines (default:
False)

--label-regex REGEX
(continues on next page)

3.11. Notebook Punching 39

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

only process marker lines whose labels match REGEX
(default: ''; empty regex matches all)

Tags

The tags option defines the trigger set, using a comma-separated list. It can also be defined as a list in
the configuration file in your home directory, with the key tags.

Punched

By default, punch writes the punched notebook. The option punched controls this.

Chads

By default, punch does not write out the chads notebook. The option chads controls this.

Keep Marker Lines

By default, the marker lines are copied to both the punched notebook and the chads notebook. The option
keep-marker-lines controls this.

Fill

By default, punch will not fill the created holes. The option fill controls whether punch fills holes.
Also see option source below.

Source

When filling holes, punch will take fixed replacement content from the configuration file if option
source is not supplied; otherwise, it will take replacement content from the source notebook, by match-
ing hole labels. The hole labels must be unique in the source notebook.

The source option cannot be used together with the tags option.

The source options implies the fill option.

List

The option list will list labels and descriptions of all holes.

40 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

Allow Errors

By default, punch will abort execution at the first error that is detected in the marker structure. The
option allow-errors can be used to let punch continue processing by assuming a corrected marker
structure. In particular,

• when a bad marker is encountered outside a hole, it is ignored, and

• when a bad marker is encountered inside a hole, a correct end marker is assumed, or inserted in
case a begin marker was detected.

The number of errors is reported. Do note, however, that when errors occurred, the notebooks involved
still need to be fixed. This option is intended only as an aid to finding as many problems in a single run
of the tool.

Label Regex

The option label-regex can be used to restrict processing to marker lines whose label matches a given
regular expression. This filtering affects production of punched and chads files, and to reading of source
chads. Regular expressions use Python re syntax. An empty string is interpreted as no filtering (process-
ing all labels).

3.11.5 JSON Output

See Write JSON Output for general information about JSON output.

punch produces the following members in the JSON output. Note that members are absent when count
is zero.

With option tags:

Name Value
"CT" count of cells with type CT
"CT holes" count of cells with type CT punched

Cell types distinguished: markdown, code, raw

With options punched and chads:

Name Value
"errors" count of errors in marker lines
"holes" count of holes detected
"labels with duplicates" count of labels with duplicates
"unfilled holes" count of unfilled holes (with option fill)
"unused source chads" count of unused source chads (with option source)

3.11. Notebook Punching 41

https://docs.python.org/3/library/re.html#regular-expression-syntax

nbtoolbelt Documentation, Release 2024.1.dev0

3.11.6 Examples

The following example punches all cells having a tag YourTurn, in verbose mode.

$ nbtb punch -t YourTurn test.ipynb -v
Options for nbpunch:
Tags that trigger punch: ['YourTurn']
Writing punched notebook: True
Writing chads notebook: False
Keeping marker lines: True
Do not fill punched holes

::::::::::::::
test.ipynb
::::::::::::::
Punch cell statistics:

12 code
2 code holes
7 markdown
1 markdown holes

No file written

Notebooks processed: 1

The following example uses a source notebook. However, not all holes in the input notebook have re-
placements in this source notebook. Also the chads notebook is written.

$ nbtb punch test-template.ipynb --chads --source test-source.ipynb
Punch cell statistics:

8 holes
2 unfilled holes

To find out which holes were not filled, use verbose mode:

$ nbtb punch test-template.ipynb --chads --source test-source.ipynb -v
Options for nbpunch:
Writing punched notebook: True
Writing chads notebook: True
Keeping marker lines: True
Fill holes from source notebook: test-source.ipynb

::::::::::::::
test-template.ipynb
::::::::::::::
Labels of unfilled holes: ['Label_7', 'Label_8']
Punch cell statistics:

8 holes
2 unfilled holes

Files written: {'test-template-punched.ipynb', 'test-template-chads.ipynb'}

Notebooks processed: 1

To verify the marker structure, use the options dry-run, list, allow-errors.

42 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

$ nbtb punch -nle test-template.ipynb test-code-marker-duplicate-label.ipynb␣
→˓test-code-marker-bad-transition-missing-end.ipynb
Dry run (no files written)
::::::::::::::
test-template.ipynb
::::::::::::::
Listing labels and descriptions for "test-template.ipynb"
[Label_1] Do first thing
[Label_2] Do second, longer, thing
[Label_3] Do third, even longer, thing
[Label_4] Write a short text
[Label_5] Write a medium text
[Label_6] Write longer text
[Label_7] Do seventh, mixed, thing.
[Label_8] Do another mixed problem.

Punch cell statistics:
8 holes

No file written
::::::::::::::
test-code-marker-duplicate-label.ipynb
::::::::::::::
Listing labels and descriptions for "test-code-marker-duplicate-label.ipynb"
[Label_1] Begin of first hole
[Label_1] Begin of second hole, with duplicate label

Punch cell statistics:
2 holes
1 labels with duplicates

No file written
::::::::::::::
test-code-marker-bad-transition-missing-end.ipynb
::::::::::::::
Listing labels and descriptions for "test-code-marker-bad-transition-missing-
→˓end.ipynb"
[Label_1] Begin of first hole

Unexpected transition in marker line of cell 2 on line 1:
#// BEGIN_TODO [Label_2] Begin of second hole
Expected END [Label_1], but found BEGIN.
Inserting correct end marker
[Label_2] Begin of second hole

Punch cell statistics:
1 errors
2 holes

No file written

3.11. Notebook Punching 43

nbtoolbelt Documentation, Release 2024.1.dev0

3.12 Configuration Files

nbtoolbelt can load options from a JSON configuration file: see Read Configuration File.

Such a configuration file holds one object in JSON (JavaScript Object Notation), with optional members
for global options and options for each individual tool:

• nbtoolbelt: global options that apply to multiple tools

• nbvalidate: options for Notebook Validation

• nbheads: options for Notebook Heads

• nbdump: options for Notebook Dump

• nbstats: options for Notebook Statistics

• nbview: options for Notebook Viewing

• nbcat: options for Notebook Catenation

• nbclean: options for Notebook Cleaning

• nbrun: options for Notebook Execution

• nbsplit: options for Notebook Splitting

• nbpunch: options for Notebook Punching

The options for a tool are contained in a single object, with a member per option. The member name
is the same as the long command-line option, in which dashes (’-’) have been replaced by underscores
(’_’).

Whenever a configuration file is loaded,

1. the common options from that file are applied (with attribute "nbtoolbelt"),

2. those options are applied that concern the selected tool.

Thus, tool-specific options override common options in the same configuration file, but not the other way
round.

Note: Note

• that JSON syntax is very strict;

• that nbtb config [tool] will report the configuration using Python syntax;

• that JSON booleans are spelled in all lower case: false and true;

• that JSON strings must be surrounded by double quotes ("...").

• that JSON does not allow trailing commas in arrays and objects;

• that JSON does not support any form of comments.

Errors when loading a configuration file will be sent to stderr, and execution is aborted immediately.

44 Chapter 3. Usage Instructions

https://json.org/

nbtoolbelt Documentation, Release 2024.1.dev0

3.12.1 Example

Here is the embedded configuration file:

{
"nbtoolbelt": {
"notebooks": [],
"verbose": false,
"quiet": false,
"assert": true,
"validate": false,

"run": false,
"kernel_name": "",
"run_path": "",
"timeout": -1,
"interrupt_on_timeout": true,
"record_timing": true,
"ipc": "",
"allow_errors": true,
"clean_before": false,
"clean_after": false,
"clean_after_metadata": [
],
"streams_head": -1,
"streams_truncate_message": "*** Output truncated ***",
"append_cell": false,
"appended_cell": "# Automatically added code cell: lists all global names␣

→˓defined by this notebook.\n%whos",

"inplace": false,
"write_files": true,
"output_json": null,
"debug": false

},

"nbvalidate": {

},

"nbhead": {
"number": 5

},

"nbdump": {
"dump_notebook_info": true,
"dump_cell_info": true,
"dump_sources": true,
"dump_cell_types": [
"markdown",
"code",

(continues on next page)

3.12. Configuration Files 45

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

"raw"
],
"dump_info_prefix": "=====",
"dump_source_line_indent": 2,
"dump_source_line_numbers": false,
"dump_cell_spacing": 0

},

"nbstats": {
"all_stats": false,
"cell_types": true,
"sources": false,
"metadata": false,
"tags": false,
"attachments": false,
"outputs": false,
"streams": false,
"errors": false,
"execution": false,
"extra": false

},

"nbview": {
"browser": true,
"template_file": "",
"template": "classic",
"wait_delete": false,
"view_result_name": "-view"

},

"nbcat": {
"cat_result_name": "-cat"

},

"nbrun": {
"kernel_name": "",
"run_path": "",
"timeout": -1,
"interrupt_on_timeout": true,
"allow_errors": true,
"record_timing": true,
"clean_before": true,
"clean_before_metadata": [
"ExecuteTime",
"execution"

],
"clean_after": true,
"clean_after_metadata": [
"collapsed",

(continues on next page)

46 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

"scrolled"
],
"streams_head": -1,
"append_cell": false,
"run_result_name": "-run"

},

"nbclean": {
"clean_notebook_metadata_fields": [],
"clean_cell_metadata_fields": [],
"clean_tags": [],
"clean_empty_cells": false,
"clean_outputs": false,
"clean_result_name": "-clean"

},

"nbsplit": {
"split_cell_types": [

"markdown",
"code",
"raw"

],
"split_markdown_result_name": "-markdown",
"split_code_result_name": "-code",
"split_raw_result_name": "-raw"

},

"nbpunch": {
"tags": [
],
"punched": true,
"chads": false,
"keep_marker_lines": true,
"marker_regex": {
"markdown": "#//.*_TODO",
"code": "#//.*_TODO",
"raw": "#//.*_TODO"

},
"marker_line_parsing_regex": {
"markdown": "`#// (?P<transition>.*?)_TODO \\[(?P<label>.*?)\\] ?(?P

→˓<description>.*?)`",
"code": "#// (?P<transition>.*?)_TODO \\[(?P<label>.*?)\\] ?(?P

→˓<description>.*)",
"raw": "#// (?P<transition>.*?)_TODO \\[(?P<label>.*?)\\] ?(?P

→˓<description>.*)"
},
"marker_transitions": {
"begin": "BEGIN",
"end": "END"

(continues on next page)

3.12. Configuration Files 47

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

},
"fill": false,
"filling": {
"markdown": "\n<div class='alert alert-warning' role='alert'>Replace␣

→˓this line by your text.</div>\n",
"code": "\n# ===== =====> Replace this line by your code. <===== =====

→˓#\n",
"raw": "\n% ===== =====> Replace this line by your content. <=====␣

→˓=====\n"
},
"list": false,
"allow_errors": false,
"punch_source": "",
"source_chads": {},
"punch_punched_result_name": "-punched",
"punch_chads_result_name": "-chads",
"label_regex": ""

}
}

Here is an example configuration file with one global option (for verbose mode) and options
for running and punching. It can either be loaded through the command-line option --config
nbtoolbelt.json or by putting it in your home directory as ~/.nbtoolbelt.json (note the dot,
which makes it a hidden file).

{
"nbtoolbelt": {
"verbose": true

},
"nbrun": {
"kernel_name": "python3",
"timeout": 5,
"allow_errors": false

},
"nbpunch": {
"tags": ["YourTurn"]

}
}

48 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

3.13 Library Usage

nbtoolbelt can be used in Python 3 programs as a library.

3.13.1 Example

An example script using nbtoolbelt as library:

#! /usr/bin/env python
"""
Example script that illustrates use of nbtoolbelt as a library

It expects one argument on the command-line, opens it as a Jupyter notebook,␣
→˓and
shows its global metadata and counts per cell type.
"""

import sys
import nbformat
import nbtoolbelt as nbtb

def main() -> int:
"""Main entry point.

:return: exit code
"""
try:

nb = nbformat.read(sys.argv[1], as_version=4)
except Exception as e:

print('{}: {}'.format(type(e).__name__, e), sys.stderr)
return 1

nbtb.print_dict(nbtb.nb_metadata(nb), 'Notebook metadata')

nbtb.print_dict(nbtb.nb_cell_stats(nb)['cell_types'], 'Cell types')

return 0

if __name__ == '__main__':
sys.exit(main())

Here is a sample run of this script:

$ example.py test.ipynb
Notebook metadata:

4.2 format version
python3 kernel

python 3.6.1 language
(continues on next page)

3.13. Library Usage 49

nbtoolbelt Documentation, Release 2024.1.dev0

(continued from previous page)

Cell types:
12 code
7 markdown
19 total cell count

3.14 API Documentation

3.15 Adding Tools to nbtoolbelt

nbtoolbelt is set up in a modular way, so that it easy to add new tools.

The base class Tool is defined in toolbaseapp.py.

Every tool extends Tool, and thereby inherits the common code for argument parsing, looping over all
argmuments, reading and writing of notebooks. The tool only needs to override

• the constructor __init__() [it must call super() at the beginning],

and following hook methods:

• config_tool_args_parsing() to configure the parser for tool-specific arguments [optional; no
need to call super()]

• check_and_adjust_arguments() to check and adjust tool-specific arguments, e.g. to enforce
consistence [optional; no need to call super()]

• print_tool_args() to print tool-specific arguments, called in verbose mode [optional; no need
to call super()]

• process_nb() to process one notebook, returning produced notebooks [must NOT call
super()]

• process_collected_data() to process data collected for all notebook [must call super() at
the beginning]

For a simple example, see the head tool.

• documentation: Notebook Heads

• source file: nbheadapp.py

3.16 Testing nbtoolbelt

nbtoolbelt comes with automated test cases using pytest and pytest-mock.

For the purpose of testing, the command-line script nbtb has a hidden command base. This command
invokes the base class Tool (also see Adding Tools to nbtoolbelt), which copies notebooks:

• notebook nb.ipynb is copied to nb-copy.ipynb

$ nbtb base test.ipynb
Copying: test.ipynb

Test cases for concrete tools need not test functionality of the base class.

50 Chapter 3. Usage Instructions

https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/blob/master/src/nbtoolbelt/toolbaseapp.py
https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/blob/master/src/nbtoolbelt/nbheadapp.py

nbtoolbelt Documentation, Release 2024.1.dev0

3.17 Change Log

3.17.1 2024.1.dev0

• Update the Read-the-Docs YAML file with required build keys.

• Add generation of pytest code coverage information.

• Add some developer information.

3.17.2 2022.4

• Explicitly dropped support for Python 3.6.

• Improved declaration of dependencies.

• Removed use of pandas.DataFrame.append (which is deprecated), and replaced it by pandas.
concat.

3.17.3 2022.3

• Added the record-timing option to nbrun (default True).

• Added clean-before-metadata option to clean code metadata before running. By default, ex-
ecution code metadata is cleaned before running.

• Updated nbview to support nbconvert 6 templates, by deprecating the template-file option
and adding the template option, which defaults to classic.

• Added explicit version dependencies in setup.py.

• Changed development status to production/stable, since nbtoolbelt has been used successfully
for more than 4 years in production. In that time frame, nbtoolbelt processed over ten million
notebooks.

3.17.4 2022.3.dev0

• Fixed and added test cases for nbrun with cell timeout.

• Removed duplicate keys in default configuration file.

• Documented nbrun interrupt-on-timeout option. Fixed typo in nbrun documentation.

• Changed nbrun default for interrupt-on-timeout option to True.

• Show nbrun interrupt-on-timeout option value in verbose mode.

• Fixed type hints for main methods of the tools.

3.17. Change Log 51

nbtoolbelt Documentation, Release 2024.1.dev0

3.17.5 2020.7.dev2

• Removed dependency on pypandoc and used README.md directly.

3.17.6 2020.7.dev1

• Mentioned dependency on pypandoc for packaging (to get the long project description from
README.md).

3.17.7 2020.7.dev0

• Added more documentation in source code.

• Exported also version info and package name.

• In run, only set kernel name if non-empty.

• In punch, added rudimentary support for reading of chads from multiple source notebooks.

• In punch, added option --label-regex to process only marker lines with label matching given
regex.

• Added more test cases for run.

• In top-level REAMDE, listed steps to add a feature to nbtoolbelt.

• Instructed Read the Docs to generate documentation in all formats.

3.17.8 2020.2.dev0

• Fixed inlining of attachments with names containing (quoted) spaces.

3.17.9 2018.2.dev1

• Improved documentation; in particular, documented JSON output for each tool.

• Report empty outputs under Code cell outputs instead of Code cell execution using
the label code cells without outputs.

• Fixed tests_require in setup.py.

3.17.10 2018.2.dev0

• Improved help text in punch for option allow-errors.

• Fixed json output for punch; it now includes statistics gathered during processing.

52 Chapter 3. Usage Instructions

nbtoolbelt Documentation, Release 2024.1.dev0

3.17.11 2018.1.dev0

• By default, clean does nothing (previously it would clean all outputs by default).

• Improved error reporting in punch when bad marker lines are detected.

• Added option --list (-l) to punch that list all labels and descriptions.

• Added option --allow-errors (-e) to punch that continues on marker errors.

• Tool stats now also shows counts of empty sources per cell type; minor improvements in labeling
of statistics.

• Tool view now has option template-file to select a template file other than default full.

3.17.12 2017.11.dev1

• Fixed code to comply with Python 3.5 and PEP 8

3.17.13 2017.10.dev5

• Fixed generation of documentation for Read the Docs (had to switch it to Python 3.5)

• Fixed defect in punch with frequencies when writing chads notebook but not punched notebook

• Updated README now that the source code repository has gone public

3.17.14 2017.10.dev4

• Was not (intended to be) released

3.17.15 2017.10.dev3

• Converted README to reST

• Improved problem reporting in punch

3.17.16 2017.10.dev2

Initial release on PyPI

3.17.17 2017.9.dev3

Initial private release

3.17. Change Log 53

nbtoolbelt Documentation, Release 2024.1.dev0

54 Chapter 3. Usage Instructions

CHAPTER

FOUR

REFERENCES

• The structure of Jupyter notebooks is specified in nbformat (documentation). The library
nbformat facilitates programmatic manipulation of notebooks.

• Tool to convert notebooks: nbconvert (documentation); can be used on the command line and as
a library for conversion to various other formats, including notebook execution and other notebook
versions. It also provides a set of notebook preprocessors.

• Tools for showing, diffing, and merging Jupyter notebooks, including Git integration: nbdime
(documentation)

55

https://nbformat.readthedocs.io/en/latest/index.html
https://nbconvert.readthedocs.io/en/latest/index.html
https://nbdime.readthedocs.io/en/latest/index.html

nbtoolbelt Documentation, Release 2024.1.dev0

56 Chapter 4. References

CHAPTER

FIVE

LICENSE AND SOURCE CODE

This software is made available under the terms of the MIT License.

Copyright (c) 2017-2020 - Eindhoven University of Technology, The Netherlands

The source code and issue tracker are at <https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/>.

5.1 Source Code

5.1.1 nbtoolbelt

nbtoolbelt package

Submodules

nbtoolbelt.arguments module

nbtoolbelt.cleaning module

nbtoolbelt.config module

nbtoolbelt.counting module

nbtoolbelt.inline_attachments module

nbtoolbelt.nbcatapp module

nbtoolbelt.nbcleanapp module

nbtoolbelt.nbdumpapp module

nbtoolbelt.nbheadapp module

nbtoolbelt.nbpunchapp module

57

https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/

nbtoolbelt Documentation, Release 2024.1.dev0

nbtoolbelt.nbrunapp module

nbtoolbelt.nbsplitapp module

nbtoolbelt.nbstatsapp module

nbtoolbelt.nbvalidateapp module

nbtoolbelt.nbviewapp module

nbtoolbelt.notebook_io module

nbtoolbelt.printing module

nbtoolbelt.processing module

nbtoolbelt.punching module

nbtoolbelt.rendering module

nbtoolbelt.running module

nbtoolbelt.toolbaseapp module

nbtoolbelt.validating module

Module contents

58 Chapter 5. License and Source Code

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

59

	Introduction
	nbtoolbelt
	nbconvert
	nbdime

	Installation
	Dependencies
	Upgrading
	Uninstall
	Developers

	Usage Instructions
	Command-Line Usage
	Processing Multiple Notebooks
	Common Tool Options
	Help
	Verbose Mode
	Quiet Mode
	Assert Mode
	Validate Mode
	Run Mode
	Inplace
	Write Files and Dry Run
	Read Configuration File
	Write JSON Output
	Debug Mode

	Available Tools
	Examples

	Notebook Validation
	Options
	Examples

	Notebook Heads
	Options
	Number

	Examples

	Notebook Dump
	Options
	Examples

	Notebook Statistics
	Options
	JSON Output
	Examples

	Notebook Viewing
	Result File Name
	Options
	Template File
	Template
	Browswer
	Wait-Delete

	Notebook Catenation
	Educational Use
	Result File Name
	Options
	JSON Output

	Notebook Cleaning
	Result File Name
	Options
	JSON Output
	Examples

	Notebook Execution
	Result File Name
	Options
	Dry Run
	Allow Errors
	Timeout
	Interrupt on Timeout
	Record Timing
	Kernel Name
	Run Path
	Clean Before
	Clean After
	Append Cell
	Streams Head

	JSON Output
	Examples

	Notebook Splitting
	Result File Names
	Options
	JSON Output
	Examples

	Notebook Punching
	Result File Names
	Holes and Filling
	Via Tags
	Via Marker Lines
	Replacement Content

	Educational Use
	Options
	Tags
	Punched
	Chads
	Keep Marker Lines
	Fill
	Source
	List
	Allow Errors
	Label Regex

	JSON Output
	Examples

	Configuration Files
	Example

	Library Usage
	Example

	API Documentation
	Adding Tools to nbtoolbelt
	Testing nbtoolbelt
	Change Log
	2024.1.dev0
	2022.4
	2022.3
	2022.3.dev0
	2020.7.dev2
	2020.7.dev1
	2020.7.dev0
	2020.2.dev0
	2018.2.dev1
	2018.2.dev0
	2018.1.dev0
	2017.11.dev1
	2017.10.dev5
	2017.10.dev4
	2017.10.dev3
	2017.10.dev2
	2017.9.dev3

	References
	License and Source Code
	Source Code
	nbtoolbelt
	nbtoolbelt package
	Submodules
	nbtoolbelt.arguments module
	nbtoolbelt.cleaning module
	nbtoolbelt.config module
	nbtoolbelt.counting module
	nbtoolbelt.inline_attachments module
	nbtoolbelt.nbcatapp module
	nbtoolbelt.nbcleanapp module
	nbtoolbelt.nbdumpapp module
	nbtoolbelt.nbheadapp module
	nbtoolbelt.nbpunchapp module
	nbtoolbelt.nbrunapp module
	nbtoolbelt.nbsplitapp module
	nbtoolbelt.nbstatsapp module
	nbtoolbelt.nbvalidateapp module
	nbtoolbelt.nbviewapp module
	nbtoolbelt.notebook_io module
	nbtoolbelt.printing module
	nbtoolbelt.processing module
	nbtoolbelt.punching module
	nbtoolbelt.rendering module
	nbtoolbelt.running module
	nbtoolbelt.toolbaseapp module
	nbtoolbelt.validating module
	Module contents

	Indices and tables

