

nbtoolbelt: Tools to Work with Jupyter Notebooks

Version: 2024.1.dev0

Introduction

When you work with many Jupyter [https://jupyter.org/]
notebooks (e.g., when writing a book or teaching a course),
you will need tools to do bulk operations on notebooks.

nbtoolbelt is an integrated collection of tools to work with Jupyter notebooks.

We use nbtoolbelt together with
Momotor [https://momotor.org],
a highly-configurable LTI Tool Provider
that automatically processes digital content
submitted in our Learning Management System
(in our case, students submit Jupyter notebooks),
and returns various forms of feedback.

nbtoolbelt

With nbtoolbelt you get tools and libraries to

	validate notebooks (a wrapper for nbformat.validate())

	inspect head or tail cells of notebooks

	dump notebooks compactly on the terminal

	summarize notebooks, with statistics (stats)

	view notebooks in the browser

	catenate multiple notebooks into one notebook

	clean notebooks

	run notebooks, with pre/post cleaning (a wrapper for nbconvert.PreProcessor.execute())

	split notebooks

	punch notebooks (shoot holes in them, to produce frameworks useful for exercises)

The next sections briefly discuss some other tools.

nbconvert

You can use Jupyter’s nbconvert on the command line:

jupyter nbconvert --to notebook --execute --allow-errors notebook.ipynb

to execute notebook.nbconvert.ipynb capturing the execution results,
including cells that produce errors.
See the nbconvert documentation [https://nbconvert.readthedocs.io/en/latest/index.html]
for further details.

nbdime

You can use nbdime for selectively showing, diffing, and merging of notebooks.
For instance, when you have installed nbdime, the command

nbshow -O nb.ipynb

will show the notebook without outputs of executed code cells.
See the nbdime documentation [https://nbdime.readthedocs.io/en/latest/index.html]
for further details.

Installation

To install nbtoolbelt from PyPI [https://pypi.python.org/] (the Python Package Index):

pip install nbtoolbelt

For users who install from a locally saved wheel:

pip install --no-index --find-links=<path/to/wheel/dir> nbtoolbelt

where <path/to/wheel/dir> is the (absolute or relative) path
to the directory where you saved the wheel.
The wheel has a name of the form nbtoolbelt-*.whl.

Dependencies

nbtoolbelt depends on

	nbformat for notebook structure, and reading and writing of notebooks;

	nbconvert for notebook validation and execution;

	pandas and numpy for summary statistics in the stats tool.

For testing, it depends on pytest and pytest-mock.

Upgrading

To upgrade your nbtoolbelt installation,
add the --upgrade flag to the above commands:

pip install --upgrade nbtoolbelt

pip install --upgrade --no-index --find-links=<path/to/wheel/dir> nbtoolbelt

Uninstall

To uninstall nbtoolbelt:

pip uninstall nbtoolbelt

Developers

To install for testing:

pip install nbtoolbelt[test]

Usage Instructions

nbtoolbelt on Command Line

	Command-Line Usage
	Processing Multiple Notebooks

	Common Tool Options

	Available Tools

	Examples

	Notebook Validation
	Options

	Examples

	Notebook Heads
	Options

	Examples

	Notebook Dump
	Options

	Examples

	Notebook Statistics
	Options

	JSON Output

	Examples

	Notebook Viewing
	Result File Name

	Options

	Notebook Catenation
	Educational Use

	Result File Name

	Options

	JSON Output

	Notebook Cleaning
	Result File Name

	Options

	JSON Output

	Examples

	Notebook Execution
	Result File Name

	Options

	JSON Output

	Examples

	Notebook Splitting
	Result File Names

	Options

	JSON Output

	Examples

	Notebook Punching
	Result File Names

	Holes and Filling

	Educational Use

	Options

	JSON Output

	Examples

	Configuration Files
	Example

nbtoolbelt as Library

	Library Usage
	Example

	API Documentation

nbtoolbelt Development

	Adding Tools to nbtoolbelt

	Testing nbtoolbelt

nbtoolbelt Change Log

	Change Log
	2024.1.dev0

	2022.4

	2022.3

	2022.3.dev0

	2020.7.dev2

	2020.7.dev1

	2020.7.dev0

	2020.2.dev0

	2018.2.dev1

	2018.2.dev0

	2018.1.dev0

	2017.11.dev1

	2017.10.dev5

	2017.10.dev4

	2017.10.dev3

	2017.10.dev2

	2017.9.dev3

References

	The structure of Jupyter notebooks is specified in nbformat
(documentation [https://nbformat.readthedocs.io/en/latest/index.html]).
The library nbformat facilitates programmatic manipulation of notebooks.

	Tool to convert notebooks: nbconvert
(documentation [https://nbconvert.readthedocs.io/en/latest/index.html]);
can be used on the command line and as a library for conversion to various other formats,
including notebook execution and other notebook versions.
It also provides a set of notebook preprocessors.

	Tools for showing, diffing, and merging Jupyter notebooks,
including Git integration: nbdime
(documentation [https://nbdime.readthedocs.io/en/latest/index.html])

License and Source Code

This software is made available under the terms of the MIT License.

Copyright (c) 2017-2020 - Eindhoven University of Technology, The Netherlands

The source code and issue tracker are at <https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/>.

	Source Code
	nbtoolbelt

Indices and tables

	Index

	Module Index

Command-Line Usage

Each tool of nbtoolbelt is invoked as a subcommand of nbtb:

nbtb <tool> ...

nbtb handles the following arguments itself:

	nbtb -version to obtain the current version, and exit

	nbtb -h or nbtb --help to get a usage message, and exit

	nbtb config to show the location of the embedded configuration file and the start-up configuration

	nbtb config <tool> to show the start-up configuration for a specific tool

Processing Multiple Notebooks

When more than one notebook is given, or in verbose mode,
the output related to each notebook nb.ipynb is preceded by a header of the form

:::::::::::::
nb.ipynb
:::::::::::::

Some data is collected over all notebooks and aggregated
(also see the option output-json to Write JSON Output and the Examples below).

Common Tool Options

Many options, also for the tools themselves, have both a positive and a negated form.
This is useful, because option values can also be read from configuration files.

The following options apply to multiple tools (and many of them apply to all tools):

-h, --help show this help message and exit
-v, --verbose, -V, --no-verbose
 verbose mode produces extra output (default: False)
-q, --quiet, -Q, --no-quiet
 quiet mode produces less output (default: False)
--assert, --no-assert
 assert mode: when processing fails, abort with exit
 code 1 (default: True)
--validate, --no-validate
 validate notebook before processing (default: False)
--run, --no-run run notebook before processing (default: False)
--inplace, --no-inplace
 replace original notebooks with processing result
 (default: False)
--write-files, --no-write-files
 do write result files (default: True)
-n short for --no-write-files: do processing but do not
 write result files (dry run)
--config FILE.json read configuration from FILE.json (in JSON)
--output-json FILE.json
 write statistical output to FILE.json
-d, --debug debug mode produces diagnostic output (default: False)

Help

Each command provides its own help option:

	nbtb <tool> -h or nbtb command --help

The default option values shown, are after loading of the start-up configuration
(see below).

Verbose Mode

Each command supprts verbose mode:

	nbtb <tool> -v or nbtb <tool> --verbose

In verbose mode, the tool’s option values are shown,
and the total number of processed notebooks is shown at the end,
e.g.:

Notebooks processed: 2

Quiet Mode

Each command supprts quiet mode:

	nbtb <tool> -q or nbtb <tool> --quiet

In quiet mode, output is reduced to a minimum.

Assert Mode

In assert mode (option -a or --assert), whenever an error occurs during processing,
all further processing will be interrupted and the tool aborts.

Validate Mode

In validate mode (option --validate),
each notebook is validated before processing.

Validation options can be set under the specific tool
in a configuration file,
but not on the command line.

Run Mode

In run mode (option --run), each notebook is run before processing
(and after validation, if that applies).

Run options can be set under the specific tool
in a configuration file,
but not on the command line.

Inplace

For some tools (currently: clean and run),
the option --inplace can be used to replace the input notebook
with the resulting notebook.

Write Files and Dry Run

In dry-run mode (option --no-write-files, or -n for short),
all processing and reporting is done,
but resulting notebooks are not written to their destination file.

This allows one te experiment with options.
In particular, this is useful in combination with verbose mode.

Read Configuration File

Initial option settings can be read from a configuration file (option --config FILE.json).

At start up, each tool gathers an initial configuration as follows.

	The configuration file embedded in the package is loaded.

	If present, the configuration file /etc/nbtoolbelt.json is loaded on top of this.

	Finally, if present, the configuration file ~/.nbtoolbelt.json is loaded on top of that.
Here, ~ stands for the user’s home directory.

The invokation

$ nbtb config [tool]

will show which configuration files are loaded,
and what the resulting configuration is.

Each tool can read options from a configuration file:

	nbtb <tool> ... --config file.json ...

The options from the configuration file override the preceding command-line options,
and are, in turn, overridden by any subsequent command-line options.

See Configuration Files for details about configuration files.

Write JSON Output

Most tools gather some statistics as they process notebooks.
These statistics are printed as notebooks are processed.
For use with other tooling,
such tool output can also be written to a file in JSON [https://json.org/] format
(option --output-json FILE.json).

This JSON output file contains one array, where

	item 0 concerns data aggregated over all notebooks that were processed;

	item i (i from 1) concerns data collected for the i-th notebook argument;

	each item is an object with further data appearing in various members,
documented per tool;

	one common member is present with name "file_name",
and the file’s name as value.

Debug Mode

In debug mode, diagnostic output is produced, and in particular, all option settings are shown.

Available Tools

The following tools are available:

	nbtb validate ... Notebook Validation

	nbtb head ... Notebook Heads

	nbtb dump ... Notebook Dump

	nbtb stats ... Notebook Statistics

	nbtb view ... Notebook Viewing

	nbtb cat ... Notebook Catenation

	nbtb clean ... Notebook Cleaning

	nbtb run ... Notebook Execution

	nbtb split ... Notebook Splitting

	nbtb punch ... Notebook Punching

Examples

The following invocation shows

	the options loaded at start up from the various configuration files,

	the location where these files were found, and

	what the resulting configuration is:

$ nbtb config run
Loading configuration for nbrun from: /Users/.../nbtoolbelt/data/nbtoolbelt.json
Skipping configuration in: /etc/nbtoolbelt.json (not present)
Loading configuration for nbrun from: /Users/.../.nbtoolbelt.json
Configuration accumulated for nbrun:
 allow_errors (bool): True
 append_cell (bool): False
 appended_cell (str): '# Automatically added code cell: lists all global names defined by this notebook.\n%whos'
 assert (bool): True
 clean_after (bool): True
 clean_after_metadata (list): ['collapsed', 'scrolled']
 clean_before (bool): True
 clean_before_metadata (list): ['ExecuteTime', 'execution']
 debug (bool): False
 inplace (bool): False
 interrupt_on_timeout (bool): True
 ipc (str): ''
 kernel_name (str): ''
 notebooks (list): []
 output_json (NoneType): None
 quiet (bool): False
 record_timing (bool): True
 run (bool): False
 run_path (str): ''
 run_result_name (str): '-run'
 streams_head (int): -1
 streams_truncate_message (str): '*** Output truncated ***'
 timeout (int): -1
 validate (bool): False
 verbose (bool): False
 write_files (bool): True

The following invocation prints statistics for two notebooks, and
writes JSON output to file nbtb-stats-output.json.

$ nbtb stats short.ipynb test.ipynb --output-json nbtb-stats-output.json

::::::::::::::
short.ipynb
::::::::::::::
Notebook metadata:
 4.2 format version
 python3 kernel
 python 3.6.1 language
Cell types:
 1 code
 1 markdown
 2 total cell count

::::::::::::::
test.ipynb
::::::::::::::
Notebook metadata:
 4.2 format version
 python3 kernel
 python 3.6.1 language
Cell types:
 12 code
 7 markdown
 19 total cell count

Totals
======

Cell types:
 13 code
 8 markdown
 21 total cell count

The file nbtb-stats-output.json then contains:

[
 {
 "cell_types": {
 "code": {
 "25%": 3.75,
 "50%": 6.5,
 "75%": 9.25,
 "count": 2.0,
 "max": 12.0,
 "mean": 6.5,
 "min": 1.0,
 "std": 7.7781745930520225,
 "total": 13.0
 },
 "markdown": {
 "25%": 2.5,
 "50%": 4.0,
 "75%": 5.5,
 "count": 2.0,
 "max": 7.0,
 "mean": 4.0,
 "min": 1.0,
 "std": 4.242640687119285,
 "total": 8.0
 },
 "total cell count": {
 "25%": 6.25,
 "50%": 10.5,
 "75%": 14.75,
 "count": 2.0,
 "max": 19.0,
 "mean": 10.5,
 "min": 2.0,
 "std": 12.020815280171307,
 "total": 21.0
 }
 },
 "file_count": 2,
 "file_name": {
 "count": 2,
 "freq": 1,
 "top": "short.ipynb",
 "unique": 2
 },
 "notebook_metadata": {
 "format version": {
 "count": 2,
 "freq": 2,
 "top": "4.2",
 "unique": 1
 },
 "kernel": {
 "count": 2,
 "freq": 2,
 "top": "python3",
 "unique": 1
 },
 "language": {
 "count": 2,
 "freq": 2,
 "top": "python 3.6.1",
 "unique": 1
 }
 }
 },
 {
 "cell_types": {
 "code": 1,
 "markdown": 1,
 "total cell count": 2
 },
 "file_name": "short.ipynb",
 "notebook_metadata": {
 "format version": "4.2",
 "kernel": "python3",
 "language": "python 3.6.1"
 }
 },
 {
 "cell_types": {
 "code": 12,
 "markdown": 7,
 "total cell count": 19
 },
 "file_name": "test.ipynb",
 "notebook_metadata": {
 "format version": "4.2",
 "kernel": "python3",
 "language": "python 3.6.1"
 }
 }
]

Notebook Validation

validate validates notebooks, using nbformat.validate().
This takes the notebook version into account.

When the notebook is invalid, a message explains the problem.

Only in verbose mode, will validate report explicitly that a notebook is valid.
Otherwise, it will quietly continue.

Options

validate does not take any special options.

Examples

Check two notebooks, one valid and the other not,
with verbose mode:

$ nbtb validate test.ipynb test-bad.ipynb -v

 ::::::::::::::
 test.ipynb
 ::::::::::::::
 test.ipynb notebook structure is valid

 ::::::::::::::
 test-bad.ipynb
 ::::::::::::::
 test-bad.ipynb notebook structure is INVALID

 Additional properties are not allowed ('BAD_src' was unexpected)

 Failed validating 'additionalProperties' in markdown_cell:

 On instance['cells'][1]:
 {'BAD_src': ['This is a notebook for testing purposes;\n',
 'in particular, for testing the various scripts.\n',
 '\n',
 'It has a few formatted _MarkDown_ cells.\n',
 'And some simple code cells, with various execution effects;\n',
 'some (not only the last) has an error.\n',
 'Various tags have been set.'],
 'cell_type': 'markdown',
 'metadata': {}}

 Files processed: 2

Notebook Heads

head shows the first/last n lines of the first/last cell in
Jupyter notebooks.

head is also a good tool to see how you can extend nbtoolbelt
with another tool.
Also see Adding Tools to nbtoolbelt.

Options

The following options are supported by head:

-# NUMBER, --number NUMBER
 number of head/tail lines to show of first/last cell;
 < 0 for tail (default: 5)

Number

By default,
head shows the first 5 lines of the first cell (or fewer, if the cell is shorter).
The number option determines the desired number of lines,
and whether this is from the head of the first cell (when the number is positive), or
from the tail of the last cell (when the number is negative).
The actual number of lines shown is smaller,
when the cell has fewer lines than desired.

Examples

Show head of notebook test.ipynb:

$ nbtb head test.ipynb
Test Notebook

This is a notebook for testing purposes;
in particular,
for testing the various scripts.

Show 10 tail lines in last cell of notebook test.ipynb:

$ nbtb head -# -10 test.ipynb -v
Options for nbhead:
 Show last 10 source lines of last cell
::::::::::::::
test.ipynb
::::::::::::::
Last
cell
with
more
than
five
lines.

Notebooks processed: 1

The last cell apparently contains fewer than 10 lines.

Notebook Dump

dump shows notebook and cell information, and cell sources of Jupyter notebooks
in a compact way on stdout
(more compact than nbshow of the nbdime package).

Which elements of a notebook are dumped can be selected through options.
The output format can also be adjusted via options.

Options

The following options are supported by dump:

-g, --notebook-info, -G, --no-notebook-info
 show global notebook information (default: True)
-c, --cell-info, -C, --no-cell-info
 show cell information (default: True)
-s, --sources, -S, --no-sources
 show cell sources (default: True)
-t TYPES, --cell-types TYPES
 comma-separated list of cell types to dump (default:
 'markdown,code,raw')
-p STRING, --prefix STRING
 pre/postfix for information lines (default: '=====')
-i INT, --indent INT indentation level for source lines (default: 2)
-l, --line-numbers, -L, --no-line-numbers
 show source line numbers (default: False)
-e INT, --cell-spacing INT
 number of empty lines between cells (default: 0)

Examples

A dump of notebook short.ipynb in verbose mode:

$ nbtb dump -v short.ipynb
Options for nbdump:
 Dump notebook info: True
 Dump cell info: True
 Dump cell sources: True
 Dump cell types: markdown,code,raw
 Prefix for information lines: =====
 Source line indentation level: 2
 Show source line numbers: False
 Cell spacing lines: 0
::::::::::::::
short.ipynb
::::::::::::::
===== nbformat: 4.2 | kernel: python3 | language: python 3.6.1 =====
===== cells: 2 =====
===== cell 0: markdown | metadata: collapsed =====
 # Short Notebook for Testing

 * **Bold**
 * _Italic_
 * `Typewriter`
 * $e^{\pi i} + 1 = 0$
===== cell 1: code | outputs: 2 =====
 print(6 * 7)
 1 + 1

Notebooks processed: 1

A dump that shows notebook and cell information only (no sources):

$ nbtb dump -S test.ipynb
===== nbformat: 4.2 | kernel: python3 | language: python 3.6.1 =====
===== cells: 19 | metadata: celltoolbar,toc =====
===== cell 0: markdown =====
===== cell 1: markdown =====
===== cell 2: markdown =====
===== cell 3: code | metadata: collapsed | outputs: 1 =====
===== cell 4: code | metadata: collapsed | outputs: 1 =====
===== cell 5: code | metadata: collapsed | outputs: 1 =====
===== cell 6: code | outputs: 1 =====
===== cell 7: code | outputs: 2 =====
===== cell 8: code | outputs: 2 =====
===== cell 9: markdown | tags: YourTurn =====
===== cell 10: code | metadata: scrolled | outputs: 1 =====
===== cell 11: code | metadata: collapsed =====
===== cell 12: code | metadata: scrolled | tags: YourTurn | outputs: 1 =====
===== cell 13: code | metadata: collapsed =====
===== cell 14: markdown =====
===== cell 15: code | tags: YourTurn,Test | outputs: 2 =====
===== cell 16: code | metadata: collapsed =====
===== cell 17: markdown | attachments: 1 =====
===== cell 18: markdown =====

A dump of MarkDown sources only, without indentation:

$ nbtb dump -G -C -t markdown -i 0 test.ipynb
Test Notebook

This is a notebook for testing purposes;
in particular,
for testing the various scripts.

It has a few formatted _MarkDown_ cells.
And some simple code cells, with various execution effects;
some (not only the last) has an error.
Various tags have been set.
A Section

Demonstrating **bold face**.
This one has a \LaTeX formula: $e^{\pi i} + 1 = 0$.
Print the first one hundred numbers, their squares, and their cubes.
Produce a line plot of `df`.
![jupyter.png](attachment:jupyter.png)
Last
cell
with
more
than
five
lines.

A dump of code cells without global notebook information,
without indentation, with cell spacing 1, and info prefix #####:

$ nbtb dump -G -t code -i 0 -l 1 -p '#####' test.ipynb
cell 3: code | metadata: collapsed | outputs: 1
print([i ** 3 for i in range(6)]) # output as stream in stdout

cell 4: code | metadata: collapsed | outputs: 1
NameError
undefined

cell 5: code | metadata: collapsed | outputs: 1
6 * 7 # output as execution result

cell 6: code | outputs: 1
6 / 0 # ZeroDivisionError

cell 7: code | outputs: 2
stdout and execution result
print('Hello, World!')
'Thanks'

cell 8: code | outputs: 2
import sys
print('Message on stdout')
print('Message on stderr', file=sys.stderr)

cell 10: code | metadata: scrolled | outputs: 1
for i in range(100): # output as stream in stdout
 print(i, i ** 2, i ** 3)

cell 11: code | metadata: collapsed
import pandas as pd

cell 12: code | metadata: scrolled | tags: YourTurn | outputs: 1
df = pd.DataFrame([3, 1, 4, 1, 5, 9])
df

cell 13: code | metadata: collapsed
import seaborn # commented out to avoid depencency on seaborn
%matplotlib inline # commented out to avoid dependcy on matplotlib

cell 15: code | tags: YourTurn,Test | outputs: 2
df.plot(kind='line') # commented out to avoid dependency on matplotlib

cell 16: code | metadata: collapsed
print(42) # output to be deleted afterwards

A dump of a notebook with source line numbers:

$ nbtb dump -l short.ipynb
===== nbformat: 4.2 | kernel: python3 | language: python 3.6.1 =====
===== cells: 2 =====
===== cell 0: markdown | metadata: collapsed =====
 1| # Short Notebook for Testing
 2|
 3| * **Bold**
 4| * _Italic_
 5| * `Typewriter`
 6| * $e^{\pi i} + 1 = 0$
===== cell 1: code | outputs: 2 =====
 1| print(6 * 7)
 2| 1 + 1

Notebook Statistics

stats can show the following statistics:

	summary of required notebook metadata (always shown)

	list of other notebook metadata fields

	list of additional notebook fields
(outside metadata; should normally not be present)

	cell statistics:

	count per cell type (markdown, code, raw),
and their total

	size statistics for cell sources for all cells,
and for markdown, code, and raw cells separately:

	number of empty cells

	total number of lines (non-empty), words, characters (non-whitespace).

	count per cell metadata field, and

	count per tag in tags metadata

	count attachments, and

	count per attachment MIME type

	count outputs for code cells
(note that there can be multiple outputs per code cell)

	count of code cells without output

	count per output type (execute_result, stream, display_data, error),
and their total

	count per stream (stdout, stderr)

	count per error (by ename)

	execution counts for code cells:

	count executed

	count executed in linear order

	maximum execution count (max # in In[#])

	count not executed

	count not executed in linear order

	list of additional cell fields
(outside metadata; should normally not be present)

Use options to select reporting of specific statistics.

Options

The following options are supported by stats:

--all, --no-all show all statistics (default: False)
-c, --cell-types, -C, --no-cell-types
 count cell types (default: True)
-s, --sources, -S, --no-sources
 statistics for cell sources (default: False)
-m, --metadata, -M, --no-metadata
 show notebook metadata and count cell metadata
 (default: False)
-t, --tags, -T, --no-tags
 count individual cell tags (default: False)
-a, --attachments, -A, --no-attachments
 count cell attachment MIME types (default: False)
-o, --outputs, -O, --no-outputs
 count code cell outputs (default: False)
--streams, --no-streams
 count code cell output stream names (default: False)
-e, --errors, -E, --no-errors
 count code cell error names (default: False)
-x, --execution, -X, --no-execution
 statistics for code execution (default: False)
--extra, --no-extra report extra fields outside metadata (default: False)

JSON Output

See Write JSON Output for general information about JSON output.

stats produces the following members in the JSON output, where (*) refers to details below:

	Name

	Value

	"notebook_metadata"

	object with required notebook metadata

	"notebook_other_metadata"

	object with 1 for each other notebook metadata field

	"notebook_extra_fields"

	object with 1 for each extra notebook fields

	"cell_types"

	object with count per cell type (*)

	"sources"

	object with empty/line/word/char/total source counts per cell type
and totals (*)

	"cell_metadata"

	object with counts of cell metadata fields

	"cell_attachments"

	object counts of cells attachments per type and totals

	"code_execution"

	object with counts of for cell execution (*)

	"code_outputs"

	object with counts of code cell output per type and totals (*)

	"cell_extra"

	object with count for each extra cell field

Details for "cell_types":

	Name

	Value

	"markdown"

	count of markdown cells

	"code"

	count of code cells

	"raw"

	count of raw cells

	"total cell count"

	count of all cells

Details for "sources":

	Name

	Value

	"CT source W"

	count of W for cell type CT

	"CT empty sources"

	count of empty sources for cell type CT

Where cell type CT is on of markdown, code, raw, or total,
and what W is one of chars, lines, words.

Details for "code_execution":

	Name

	Value

	"executed"

	count of executed code cells

	"executed in linear order"

	count of code cells executed in linear order from beginning

	"maximum In[#]"

	maximum execution code of executed code cells

	"not executed"

	count of code cells not executed

	"not executed in linear order"

	count of code cells not executed in linear order from beginning

Details for "code_outputs":

	Name

	Value

	"empty outputs"

	count of code cells without output

	"display_data"

	count of display_data output

	"error"

	count of error output (total)

	"error E"

	count of error output with exception E

	"execute_result"

	count of code cells with an execution result as output

	"stream"

	count of code cells with stream output (total)

	"stream S"

	count of code cells with stream S output

	"total output count"

	count of all output items (total over all code cells)

Note that each code cell can have zero or more output items in its outputs array.

Examples

Report required notebook metadata and cell types for two notebooks:

$ nbtb stats short.ipynb test.ipynb --output-json nbtb-stats-output.json

::::::::::::::
short.ipynb
::::::::::::::
Notebook metadata:
 4.2 format version
 python3 kernel
 python 3.6.1 language
Cell types:
 1 code
 1 markdown
 2 total cell count

::::::::::::::
test.ipynb
::::::::::::::
Notebook metadata:
 4.2 format version
 python3 kernel
 python 3.6.1 language
Cell types:
 12 code
 7 markdown
 19 total cell count

Totals
======

Cell types:
 13 code
 8 markdown
 21 total cell count

All statistics for one notebook:

$ nbtb stats --all test.ipynb
Notebook metadata:
 4.2 format version
 python3 kernel
 python 3.6.1 language
Other notebook metadata fields:
 1 celltoolbar
 1 toc
Cell types:
 12 code
 7 markdown
 19 total cell count
Cell sources:
 561 code source chars
 20 code source lines
 115 code source words
 454 markdown source chars
 21 markdown source lines
 89 markdown source words
 1015 total source chars
 41 total source lines
 204 total source words
Cell metadata fields:
 6 collapsed
 2 scrolled
 1 tag Test
 3 tag YourTurn
 3 tags
Cell attachments:
 1 image/png
 1 total attachments count
 1 total count of cells with attachments
Code cell outputs:
 3 code cells without outputs
 1 display_data
 2 error
 1 error NameError
 1 error ZeroDivisionError
 4 execute_result
 5 stream
 1 stream stderr
 4 stream stdout
 12 total output count
Code cell execution:
 11 executed
 3 executed in linear order
 15 maximum In[#]
 1 not executed
 9 not executed in linear order

Notebook Viewing

view generates HTML from notebooks,
and opens them in your browswer.
It uses the nbconvert.HTMLExporter and
in-lines embedded attachments to make them visible.

Result File Name

The resulting HTML for viewing notebook nb.ipynb is written to nb-view.html,
unless the --inplace options is used,
in which case it is written to nb.html.

The result name addition can be adjusted in the configuration file
by setting view_result_name;
see Configuration Files.

Options

The following options are supported by view:

-t NAME, --template NAME
 template to use (default: classic)
-b, --browser, -B, --no-browser
 open html in browser (default: True)
-w, --wait_delete, -W, --no-wait_delete
 interactively wait for user confirmation to delete
 html files (default: False)

Template File

The option template-file is deprecated, because nbconvert 6 has a template mechanism that uses directories
instead of single template files.

Template

By default, view uses the classic template.

The template option can be used to select another template.
For instance, nbconvert supports the basic template, without any CSS and JavaScript,
and lab to give you a JypterLab look.
Also see nbconvert documentation for HTML output [https://nbconvert.readthedocs.io/en/latest/usage.html#html].

Note that Jupyter notebook extensions [https://github.com/ipython-contrib/jupyter_contrib_nbextensions]
provide additional templates, such as toc2.tpl for an enhanced Table of Contents.
However, these templates can no longer be used, since they have not been converted to the nbconvert 6 style.

Browswer

By default, view opens the generated HTML in a new tab in your default browser.

The browser option can be used to override this behavior.

Wait-Delete

By default,
view exits after generating HTML files, and opening them in your browser.
The generated HTML files are not deleted.

The wait-delete option makes view wait after generating the HTML files,
until the user confirms deletion of the HTML files:

$ nbtb view -w test.ipynb
Delete created html files ([y]/n)? y
Deleting: test-view.html

Notebook Catenation

cat catenates the cells of multiple notebooks into a single notebook.
The resulting notebook takes its notebook-level properties from the first notebook.

This tool can be used to prepend and append cells to a notebook
(also see the append-cell option of the run tool).
Prepended cells can provide (re)definitions,
and appended cells can show further output.

Educational Use

In an educational setting,
it can be useful to redefine the built-in function input()
to either be blocked:

def input(*args, **kwargs):
 import sys
 print('input() is forbidden in notebooks', file=sys.stderr)
 sys.exit(1)

Or to deliver strings read from a file:

def __yield_from_file(file_name):
 with open(file_name) as f:
 yield from f.readlines()

def input(prompt=None, __gen=__yield_from_file('input.txt')):
 if prompt:
 print(prompt, end='')
 line = next(__gen)
 # suppress terminating end-of-line
 if line and line[-1] == '\n':
 return line[:-1]
 return line

By putting this code in a notebook, it can be prepended to every student notebook,
via cat.

Result File Name

The result of catenating notebooks nb.ipynb ... is written to nb-cat.ipynb
(that is, the name of the first notebook argument is used),
unless the option --inplace is applied,
in which case the result is written to nb.ipynb.

The result name addition can be adjusted in the configuration file
by setting cat_result_name;
see Configuration Files.

Options

cat does not have any tool-specific options.

JSON Output

See Write JSON Output for general information about JSON output.

cat produces the following members in the JSON output:

	Name

	Value

	"cell_types"

	object with counts per cell type (see Notebook Statistics)

Note that members are absent when count is zero.

Notebook Cleaning

clean can delete elements from Jupyter notebooks:

	selected notebook-level non-required metadata fields

	selected cell-level metadata fields

	selected cell tags

	empty cells

	all outputs of code cells

When code cell outputs are cleaned,
also the execution counts are cleaned (reset to not-executed).

Result File Name

The result of cleaning notebook nb.ipynb is written to nb-clean.ipynb,
unless the option --inplace is applied.

The result name addition can be adjusted in the configuration file
by setting clean_result_name;
see Configuration Files.

Options

The default behavior is to clean nothing.
The following options are supported by clean:

-g FIELDS, --global FIELDS
 comma-separated list of fields to remove from metadata
 of notebook (default: '')
-m FIELDS, --metadata FIELDS
 comma-separated list of fields to remove from metadata
 of all cells (default: '')
-t TAGS, --tags TAGS comma-separated list of tags to remove from all cells;
 use '-m tags' to remove all tags (default: '')
-e, --empty-cells, -E, --no-empty-cells
 delete cells with empty source, i.e. with whitespace
 only (default: False)
-o, --outputs, -O, --no-outputs
 clean all outputs from all code cells (default: False)

JSON Output

See Write JSON Output for general information about JSON output.

clean produces the following members in the JSON output:

	Name

	Value

	"global F"

	count of global metadata fields F cleaned (0 or 1)

	"cell F"

	count of cell metadata fields F cleaned

	"tag T"

	count of cell tags T cleaned

	"empty_cells"

	count of empty cells cleaned

	"outputs"

	count of cell outputs cleaned

Note that members are absent when count is zero.

Examples

Remove all collapsed and scrolled metadata fields from cells:

$ nbtb clean -m collapsed,scrolled test.ipynb -v
Options for nbclean:
 Deleting cell metadata fields: ['collapsed', 'scrolled']
 Clearing outputs from all code cells

::::::::::::::
test.ipynb
::::::::::::::
Counts:
 6 cell collapsed
 2 cell scrolled
 9 outputs cleaned
 Files written: {'test-clean.ipynb'}

Notebooks processed: 1

Notebook Execution

run executes all codes cells in the notebook, from first to last,
comparable to Kernel > Restart & Run All in the Jupyter Notebook Editor.
Each cell is executed separately,
in the context of the global state,
which is empty at the start and updated as cells execute.

Unless in quiet mode,
run will report some execution statistics on stdout:

	number of code cells

	number of executed code cells

	number of executions that resulted in an error

Result File Name

The result of running notebook nb.ipynb is written to nb-run.ipynb,
unless the option --inplace is applied.

The result name addition can be adjusted in the configuration file
by setting run_result_name;
see Configuration Files.

Options

The following options are supported by run:

-e, --allow-errors, -E, --no-allow-errors
 continue on errors (default: True)
-b, --clean-before, -B, --no-clean-before
 clean code output before running (default: True
-a, --clean-after, -A, --no-clean-after
 clean code metadata after running (default: True)
-k KERNEL_NAME, --kernel-name KERNEL_NAME
 name of kernel to use, e.g. python3; for kernel
 specified in notebook; default: '')
-p RUN_PATH, --run-path RUN_PATH
 working directory for execution ;"" for current
 working directory (default: '')
-t TIMEOUT, --timeout TIMEOUT
 timeout time in seconds per cell; -1 for unlimited
 (default: -1)
-i, --interrupt-on-timeout, -I, --no-interrupt-on-timeout
 interrupt execution on timeout (default: False)
-r, --record-timing, -R, --no-record-timing
 record execution times (default: True)
-w, --append-cell, -W, --no-append-cell
 append special code cell (default: '# Automatically
 added code cell: lists all global names defined by
 this notebook.\n%whos') before executing notebooks
 (default: False)
--streams-head STREAMS_HEAD
 limit output streams to a maximum number of lines per
 cell; -1 for unlimited (default: 1000)

Dry Run

By default,
the result of executing notebook nb.ipynb is written to nb-run.ipynb,
unless the dry-run option is in effect.

The dry-run option suppresses writing of the resulting notebook.
It does not suppress execution.

Allow Errors

By default, run executes all code cells, even when errors occur.
Such errors typically give rise to an error element among the cell outputs in the notebook
(which the Jupyter Notebook Editor shows on a red background).

The no-allow-errors option makes run abort execution at the first error.
Error details are then reported on stderr.

Timeout

By default, run does not limit the execution time.
The timeout option sets a limit in seconds on the execution time per cell.
Use -1 as value to remove the limit.

Interrupt on Timeout

By default, run interrupts the kernel with a KeyboardInterrupt when a timeout occurs
(which does not stop further execution when allowing errors).
When not interrupting on timeout,
run aborts execution with a CellTimeoutError when a timeout occurs
(which stops further execution even when allowing errors).

Record Timing

By default, run records cell execution times in the resulting cell metadata under the key execution.
See nbformat, Cell metadata [https://nbformat.readthedocs.io/en/latest/format_description.html?highlight=execution#cell-metadata]
for details.

Kernel Name

By default, run uses the kernel associated with the notebook
(as specified in its metadata > kernel attribute).
The kernel_name option overrides this default behavior and sets a specific kernel.
Typical choices are

	python2

	python3

Run Path

By default, the notebook is executed in the current working directory
where the tool was invoked.
The run-path option sets a specific path to be the working directory.

Clean Before

By default, run cleans the notebook before execution:

	the outputs of all code cells are removed,

	their execution counts are cleared, and

	ExecuteTime and execution metadata is removed.

This ensures that the the notebook is run in a clean environment.
In particular, when executing until the first error,
no spurious outputs and metadata from a previous run will be left in the notebook.

The not-before option suppresses this pre-cleaning step.

Clean After

By default, run cleans the notebook after execution:

	the collapased and scrolled metadata are removed from all code cells

Currently, it appears that execution through nbconvert
will make all output cells collapsed and scrolled.
When such a notebook is subsequently opened in the Jupyter Notebook Editor,
no outputs will be visible, until they are actively opened by the user
(either by clicking to the left of the output area of a cell,
or through the Cell menu to toggle the output cell state.

The not-after option suppresses this post-cleaning step.

Append Cell

The append-cell option appends to the notebook (before execution) a code cell containing:

Automatically added code cell: lists all global names defined by this notebook.
%whos

This will show an overview of all names defined a the global level of the notebook,
their types, and some data/info.
Also see the example below.

The content of the appended code cell can be changed in a configuration file.

Using the cat tool, you can prepend and append entire notebooks.

Streams Head

The streams-head option will limit the amount of data in output streams
(both stdout and stderr) that is written to the resulting notebook,
by showing only the head.
The number of lines to show is a parameter to this option (use -1 for unlimited output).
It applies per cell.

This option serves as a protection to generate excessively large notebooks,
when the input notebook contains ‘overzealous’ code.
An example of ‘overzealous’ code is an infinite loop that contains a call to print.

JSON Output

See Write JSON Output for general information about JSON output.

run produces the following members in the JSON output:

	Name

	Value

	"code cells"

	count of code cells

	"executed"

	count of executed code cells

	"with errors"

	count of executed code cells with errors

Note that members are absent when count is zero.

Examples

Example output when running a single notebook without options:

$ nbtb run test.ipynb
Execution statistics:
 12 code cells
 12 executed
 2 with errors

The execution result is written to test-run.ipynb.

Example output when running to first error in verbose mode without writing the result:

$ nbtb run -E tool-faq.ipynb test.ipynb -v -n
Dry run (no files written)
Options for nbrun:
 Cleaning code output and ['ExecuteTime', 'execution'] metadata before running
 Timeout: unlimited
 Kernel name: from notebook
 Working dir: current directory
 Stopping at first error
 Cell execution does not time out
 Recording execution times
 Not appending code cell with %whos
 Cleaning ['collapsed', 'scrolled'] code metadata after running
 Not limiting output streams

::::::::::::::
short.ipynb
::::::::::::::
Execution statistics:
 1 code cells
 0 code cells with empty source
 1 executed
 0 with errors
No file written

::::::::::::::
test.ipynb
::::::::::::::

Notebooks processed: 1
Processing of "test.ipynb" failed (CellExecutionError): An error occurred while executing the following cell:

NameError
undefined

NameError: name 'undefined' is not defined

Tool 'run' aborted.

Here is an example with the append-cell (-w) option.
The execution result is written to test-run.ipynb.
Next, we use nbshow to inspect the output of the last cell
(Note that nbshow is part of the nbdime package;
see documentation [https://nbdime.readthedocs.org/] of nbdime.)

$ nbtb run -w test.ipynb
Execution statistics:
 13 code cells
 0 code cells with empty source
 13 executed
 2 with errors

$ nbshow test-run.ipynb | tail -n -16
code cell 19:
 execution_count: 13
 source:
 # Automatically added code cell: lists all global names defined by this notebook.
 %whos
 outputs:
 output 0:
 output_type: stream
 name: stdout
 text:
 Variable Type Data/Info

 df DataFrame 0\n0 3\n1 1\n2 4\n3 1\n4 5\n5 9
 i int 99
 pd module <module 'pandas' from '/o<...>ages/pandas/__init__.py'>
 sys module <module 'sys' (built-in)>

Notebook Splitting

split splits Jupyter notebooks
by writing each cell type (markdown, code, and raw)
to its own notebook.

Unless in quiet mode,
split shows cell counts: markdown, code, raw, and total.

Result File Names

The results of splitting notebook nb.ipynb are named:

	nb-markdown.ipynb

	nb-code.ipynb

	nb-raw.ipynb

When a particular type of cell does not occur,
that result notebook is not written.

The result name additions can be adjusted in the configuration file
by setting split_markdown_result_name, split_code_result_name, and split_raw_result_name;
see Configuration Files.

Options

The following options are supported by split:

-t TYPES, --split-cell-types TYPES
 comma-separated list of cell types to split (default:
 'markdown,code,raw')

JSON Output

See Write JSON Output for general information about JSON output.

split produces the following members in the JSON output:

	Name

	Value

	"CT"

	count of cells with type CT

Cell types distinguished: markdown, code, raw

Examples

Split notebook test.ipynb in verbose mode without writing the results:

$ nbtb split test.ipynb -v -n
Dry run (no files written)
Options for nbsplit:
 (None)

::::::::::::::
test.ipynb
::::::::::::::
Split cell statistics:
 12 code
 7 markdown
 0 raw
 19 total
No files written

Notebooks processed: 1

Notebook Punching

punch punches holes in notebooks,
supporting two different approaches to defining the holes (see below).
The resulting holes can be filled
either with fixed content, or from a source notebook
(see options fill and source).

punch can also collect the content that has been punched out,
the so-called chads (see option chads).

Result File Names

The result of punching notebook nb.ipynb is written to nb-punched.ipynb,
and the content that got punched out, the so-called chads, is written to nb-chads.ipynb.

The result name additions can be adjusted in the configuration file
by setting punch_punched_result_name and punch_chads_result_name;
see Configuration Files.

Holes and Filling

The two ways of defining holes are:

	Via tags:
any cell with a tag contained in the trigger set (see option tags),
will be punched as a whole.

	Via marker lines:
any source content appearing between
begin and end marker lines will be punched.

Via Tags

This approach is selected by providing a list of tags to the tags option.

In the tags approach, punch removes the source content of selected cells.
No cells will be removed;
only their source content will be emptied.

Cells are selected through the presence of cell metadata tags in a trigger set,
defined with the option tags.

When the source of a code cell is cleared,
also its outputs and execution count are cleared.

Note that nbgrader uses the tag YourTurn
to mark cells where students write their solutions;
see documentation [https://nbgrader.readthedocs.org/] of nbgrader.

Via Marker Lines

This approach applies when no tags are given (the default).

Lines to be punched are marked by enclosing them between
begin and end marker lines.

Such marker lines are recognized by a special character sequence
(default: #// for all cell types;
this can be overridden per cell type in the configuration file).
Marker lines are parsed through a regular expression (per cell type) into

	a transition, to distinguish begin and end marker lines
(from outside to inside, and from inside to outside);

	a label, to distinguish holes, especially needed when filling them from a source notebook;

	an optional description, mainly as documentation, or as hint to students.

Replacement Content

When filling,
the default replacement content is defined in the embedded configuration file as

{
 "filling": {
 "markdown": "\n<div class='alert alert-warning' role='alert'>Replace this line by your text.</div>\n",
 "code": "\n# ===== =====> Replace this line by your code. <===== ===== #\n",
 "raw": "\n% ===== =====> Replace this line by your content. <===== =====\n"
 }
}

These replacement strings can be redefined in your own configuration file;
see Configuration Files.

In the replacement content,
two substitutions are done:

	{label} is replaced by the hole’s label,

	{description} is replaced by the hole’s description.

This is especially useful with the no-keep-marker-lines option.

With the source option,
the replacement content is taken from a source notebook.
This can only be used with marker lines.
The replacement chad in the source notebook is selected by matching the labels.
In this case,
there can be a mismatch between cell types in the hole to be filled and in the selected source chad
to be used as filling.

punch ensures that content from source cells ends up
in cells of the same type in the punched notebook.
In particular,
when the source option is not used,
the punched notebook will have the same cells as the input notebook,
but possibly with different content inside the holes.

The following diagram illustrates how punch uses cells and cell source content
when filling from a source notebook.

[image: relationship between input, source, and punched notebook when using ``punch``]
Some notes:

	The number of cells in the source chad and input hole can differ.
Both have at least one cell.

	The begin and end marker line can be in the same cell
(in which case cells[0] and cells[-1] are identical).
In fact, a cell can contain multiple holes.

	The cell types of the begin cells can differ,
and so can the types of the end cells.
For instance, the hole could start with a code cell,
whereas the replacement source chad starts with a markdown cell.
In such cases,
punch will split cells as necessary.

	All cell metadata, attachments, and outputs are carried along.

Educational Use

punch is intended for use in an educational setting.
The teacher prepares a master notebook A with questions and
tagged or marked solutions
(see diagram).

[image: relationship between notebooks when using ``punch``]
Using punch,
the teacher then produces a punched notebook B (a framework, in software terms),
that can be given to students,
who need to fill the holes.
The teach can also produce a chads notebook C,
with just the solutions,
that can be given to assistants.
Students deliver their completed notebooks D.
When punching a student notebook D,
the chads notebook E will just contain the student’s work.

With reference to the diagram, we have:

	A = master.ipynb with questions and solutions

	nbtb punch mater.ipynb --chads produces

	B = master-punched.ipynb

	C = master-chads.ipynb

	student produces

	D = student.ipynb delivered by student (from master-punched.ipynb with work in holes)

	nbtb punch student.ipynb --chads produces

	E = student-chads.ipynb with just the student’s work

punch can optionally fill the punched holes either with fixed content
(taken from the configuration file),
or (in the case of the approach via marker lines)
with content taken from another source notebook with correspondingly marked content.

The teacher can also prepare a test notebook G,
with correspondingly marked holes,
and punch it while using the student’s notebook D as source to fill the holes.
In that way, the student’s work is copied into the test notebook
in the appropriate places.
The resulting notebook H can be executed to provide feedback.

punch can also be used to transfer the solutions from the master notebook A
into the test notebook G, obtaining a verification notebook F.

With reference to the diagram, we have:

	F = test_frame.ipynb` a test notebook to assess work

	nbtb punch test_frame.ipynb --fill --source master.ipynb produces

	G = test_frame-punched.ipynb tes notebook with teacher solutions for verification

	nbtb punch test_frame.ipynb --fill --source student.ipynb produces

	H = test_frame-punched.ipynb test notebook with student work

When filling the template notebook B with the solutions (chads) C,
the original master notebook A is obtained:

	nbtb punch master-punched.ipynb --fill --source master-chads.ipynb produces

	master-punched-punched.ipynb which is equivalent to master.ipynb

Options

The following options are supported by punch:

-t TAGS, --tags TAGS comma-separated list of tags that trigger removal of
 source from cells; e.g. YourTurn (default: '')
-p, --punched, -P, --no-punched
 whether to write punched notebook (default: True)
-c, --chads, -C, --no-chads
 whether to write chads notebook (default: False)
-m, --keep-marker-lines, -M, --no-keep-marker-lines
 whether to keep marker lines (default: True)
-f, --fill, -F, --no-fill
 whether to fill punched holes (default: False)
-s PUNCH_SOURCE, --source PUNCH_SOURCE
 source notebook for filling holes; implies --fill
 (default: "")
-l, --list, -L, --no-list
 list marker labels and descriptions (default: False)
-e, --allow-errors, -E, --no-allow-errors
 continue on parsing errors in marker lines (default:
 False)
--label-regex REGEX
 only process marker lines whose labels match REGEX
 (default: ''; empty regex matches all)

Tags

The tags option defines the trigger set, using a comma-separated list.
It can also be defined as a list in the configuration file in your home directory,
with the key tags.

Punched

By default, punch writes the punched notebook.
The option punched controls this.

Chads

By default, punch does not write out the chads notebook.
The option chads controls this.

Keep Marker Lines

By default, the marker lines are copied to both the punched notebook
and the chads notebook.
The option keep-marker-lines controls this.

Fill

By default, punch will not fill the created holes.
The option fill controls whether punch fills holes.
Also see option source below.

Source

When filling holes,
punch will take fixed replacement content from the configuration file
if option source is not supplied;
otherwise, it will take replacement content from the source notebook,
by matching hole labels.
The hole labels must be unique in the source notebook.

The source option cannot be used together with the tags option.

The source options implies the fill option.

List

The option list will list labels and descriptions of all holes.

Allow Errors

By default, punch will abort execution at the first error
that is detected in the marker structure.
The option allow-errors can be used to let punch
continue processing by assuming a corrected marker structure.
In particular,

	when a bad marker is encountered outside a hole, it is ignored, and

	when a bad marker is encountered inside a hole, a correct end marker is assumed,
or inserted in case a begin marker was detected.

The number of errors is reported.
Do note, however, that when errors occurred,
the notebooks involved still need to be fixed.
This option is intended only as an aid to finding as many problems
in a single run of the tool.

Label Regex

The option label-regex can be used to restrict processing
to marker lines whose label matches a given regular expression.
This filtering affects production of punched and chads files, and to reading of source chads.
Regular expressions use Python re syntax [https://docs.python.org/3/library/re.html#regular-expression-syntax].
An empty string is interpreted as no filtering (processing all labels).

JSON Output

See Write JSON Output for general information about JSON output.

punch produces the following members in the JSON output.
Note that members are absent when count is zero.

With option tags:

	Name

	Value

	"CT"

	count of cells with type CT

	"CT holes"

	count of cells with type CT punched

Cell types distinguished: markdown, code, raw

With options punched and chads:

	Name

	Value

	"errors"

	count of errors in marker lines

	"holes"

	count of holes detected

	"labels with duplicates"

	count of labels with duplicates

	"unfilled holes"

	count of unfilled holes (with option fill)

	"unused source chads"

	count of unused source chads (with option source)

Examples

The following example punches all cells having a tag YourTurn, in verbose mode.

$ nbtb punch -t YourTurn test.ipynb -v
 Options for nbpunch:
 Tags that trigger punch: ['YourTurn']
 Writing punched notebook: True
 Writing chads notebook: False
 Keeping marker lines: True
 Do not fill punched holes
 ::::::::::::::
 test.ipynb
 ::::::::::::::
 Punch cell statistics:
 12 code
 2 code holes
 7 markdown
 1 markdown holes
 No file written

 Notebooks processed: 1

The following example uses a source notebook.
However, not all holes in the input notebook
have replacements in this source notebook.
Also the chads notebook is written.

$ nbtb punch test-template.ipynb --chads --source test-source.ipynb
 Punch cell statistics:
 8 holes
 2 unfilled holes

To find out which holes were not filled, use verbose mode:

$ nbtb punch test-template.ipynb --chads --source test-source.ipynb -v
Options for nbpunch:
 Writing punched notebook: True
 Writing chads notebook: True
 Keeping marker lines: True
 Fill holes from source notebook: test-source.ipynb
::::::::::::::
test-template.ipynb
::::::::::::::
Labels of unfilled holes: ['Label_7', 'Label_8']
Punch cell statistics:
 8 holes
 2 unfilled holes
 Files written: {'test-template-punched.ipynb', 'test-template-chads.ipynb'}

Notebooks processed: 1

To verify the marker structure, use the options dry-run, list, allow-errors.

$ nbtb punch -nle test-template.ipynb test-code-marker-duplicate-label.ipynb test-code-marker-bad-transition-missing-end.ipynb
Dry run (no files written)
::::::::::::::
test-template.ipynb
::::::::::::::
Listing labels and descriptions for "test-template.ipynb"
 [Label_1] Do first thing
 [Label_2] Do second, longer, thing
 [Label_3] Do third, even longer, thing
 [Label_4] Write a short text
 [Label_5] Write a medium text
 [Label_6] Write longer text
 [Label_7] Do seventh, mixed, thing.
 [Label_8] Do another mixed problem.
Punch cell statistics:
 8 holes
No file written
::::::::::::::
test-code-marker-duplicate-label.ipynb
::::::::::::::
Listing labels and descriptions for "test-code-marker-duplicate-label.ipynb"
 [Label_1] Begin of first hole
 [Label_1] Begin of second hole, with duplicate label
Punch cell statistics:
 2 holes
 1 labels with duplicates
No file written
::::::::::::::
test-code-marker-bad-transition-missing-end.ipynb
::::::::::::::
Listing labels and descriptions for "test-code-marker-bad-transition-missing-end.ipynb"
 [Label_1] Begin of first hole
Unexpected transition in marker line of cell 2 on line 1:
 #// BEGIN_TODO [Label_2] Begin of second hole
 Expected END [Label_1], but found BEGIN.
 Inserting correct end marker
 [Label_2] Begin of second hole
Punch cell statistics:
 1 errors
 2 holes
No file written

Configuration Files

nbtoolbelt can load options from a JSON configuration file:
see Read Configuration File.

Such a configuration file holds one object in JSON
(JavaScript Object Notation [https://json.org/]),
with optional members for global options and options for each individual tool:

	nbtoolbelt: global options that apply to multiple tools

	nbvalidate: options for Notebook Validation

	nbheads: options for Notebook Heads

	nbdump: options for Notebook Dump

	nbstats: options for Notebook Statistics

	nbview: options for Notebook Viewing

	nbcat: options for Notebook Catenation

	nbclean: options for Notebook Cleaning

	nbrun: options for Notebook Execution

	nbsplit: options for Notebook Splitting

	nbpunch: options for Notebook Punching

The options for a tool are contained in a single object,
with a member per option.
The member name is the same as the long command-line option,
in which dashes (’-’) have been replaced by underscores (’_’).

Whenever a configuration file is loaded,

	the common options from that file are applied (with attribute "nbtoolbelt"),

	those options are applied that concern the selected tool.

Thus, tool-specific options override common options in the same configuration file,
but not the other way round.

Note

Note

	that JSON syntax is very strict;

	that nbtb config [tool] will report the configuration using Python syntax;

	that JSON booleans are spelled in all lower case: false and true;

	that JSON strings must be surrounded by double quotes ("...").

	that JSON does not allow trailing commas in arrays and objects;

	that JSON does not support any form of comments.

Errors when loading a configuration file will be sent to stderr,
and execution is aborted immediately.

Example

Here is the embedded configuration file:

{
 "nbtoolbelt": {
 "notebooks": [],
 "verbose": false,
 "quiet": false,
 "assert": true,
 "validate": false,

 "run": false,
 "kernel_name": "",
 "run_path": "",
 "timeout": -1,
 "interrupt_on_timeout": true,
 "record_timing": true,
 "ipc": "",
 "allow_errors": true,
 "clean_before": false,
 "clean_after": false,
 "clean_after_metadata": [
],
 "streams_head": -1,
 "streams_truncate_message": "*** Output truncated ***",
 "append_cell": false,
 "appended_cell": "# Automatically added code cell: lists all global names defined by this notebook.\n%whos",

 "inplace": false,
 "write_files": true,
 "output_json": null,
 "debug": false
 },

 "nbvalidate": {

 },

 "nbhead": {
 "number": 5
 },

 "nbdump": {
 "dump_notebook_info": true,
 "dump_cell_info": true,
 "dump_sources": true,
 "dump_cell_types": [
 "markdown",
 "code",
 "raw"
],
 "dump_info_prefix": "=====",
 "dump_source_line_indent": 2,
 "dump_source_line_numbers": false,
 "dump_cell_spacing": 0
 },

 "nbstats": {
 "all_stats": false,
 "cell_types": true,
 "sources": false,
 "metadata": false,
 "tags": false,
 "attachments": false,
 "outputs": false,
 "streams": false,
 "errors": false,
 "execution": false,
 "extra": false
 },

 "nbview": {
 "browser": true,
 "template_file": "",
 "template": "classic",
 "wait_delete": false,
 "view_result_name": "-view"
 },

 "nbcat": {
 "cat_result_name": "-cat"
 },

 "nbrun": {
 "kernel_name": "",
 "run_path": "",
 "timeout": -1,
 "interrupt_on_timeout": true,
 "allow_errors": true,
 "record_timing": true,
 "clean_before": true,
 "clean_before_metadata": [
 "ExecuteTime",
 "execution"
],
 "clean_after": true,
 "clean_after_metadata": [
 "collapsed",
 "scrolled"
],
 "streams_head": -1,
 "append_cell": false,
 "run_result_name": "-run"
 },

 "nbclean": {
 "clean_notebook_metadata_fields": [],
 "clean_cell_metadata_fields": [],
 "clean_tags": [],
 "clean_empty_cells": false,
 "clean_outputs": false,
 "clean_result_name": "-clean"
 },

 "nbsplit": {
 "split_cell_types": [
 "markdown",
 "code",
 "raw"
],
 "split_markdown_result_name": "-markdown",
 "split_code_result_name": "-code",
 "split_raw_result_name": "-raw"
 },

 "nbpunch": {
 "tags": [
],
 "punched": true,
 "chads": false,
 "keep_marker_lines": true,
 "marker_regex": {
 "markdown": "#//.*_TODO",
 "code": "#//.*_TODO",
 "raw": "#//.*_TODO"
 },
 "marker_line_parsing_regex": {
 "markdown": "`#// (?P<transition>.*?)_TODO \\[(?P<label>.*?)\\] ?(?P<description>.*?)`",
 "code": "#// (?P<transition>.*?)_TODO \\[(?P<label>.*?)\\] ?(?P<description>.*)",
 "raw": "#// (?P<transition>.*?)_TODO \\[(?P<label>.*?)\\] ?(?P<description>.*)"
 },
 "marker_transitions": {
 "begin": "BEGIN",
 "end": "END"
 },
 "fill": false,
 "filling": {
 "markdown": "\n<div class='alert alert-warning' role='alert'>Replace this line by your text.</div>\n",
 "code": "\n# ===== =====> Replace this line by your code. <===== ===== #\n",
 "raw": "\n% ===== =====> Replace this line by your content. <===== =====\n"
 },
 "list": false,
 "allow_errors": false,
 "punch_source": "",
 "source_chads": {},
 "punch_punched_result_name": "-punched",
 "punch_chads_result_name": "-chads",
 "label_regex": ""
 }
}

Here is an example configuration file
with one global option (for verbose mode) and options for running and punching.
It can either be loaded through the command-line option --config nbtoolbelt.json
or by putting it in your home directory as ~/.nbtoolbelt.json
(note the dot, which makes it a hidden file).

{
 "nbtoolbelt": {
 "verbose": true
 },
 "nbrun": {
 "kernel_name": "python3",
 "timeout": 5,
 "allow_errors": false
 },
 "nbpunch": {
 "tags": ["YourTurn"]
 }
}

Library Usage

nbtoolbelt can be used in Python 3 programs as a library.

Example

An example script using nbtoolbelt as library:

#! /usr/bin/env python
"""
Example script that illustrates use of nbtoolbelt as a library

It expects one argument on the command-line, opens it as a Jupyter notebook, and
shows its global metadata and counts per cell type.
"""

import sys
import nbformat
import nbtoolbelt as nbtb

def main() -> int:
 """Main entry point.

 :return: exit code
 """
 try:
 nb = nbformat.read(sys.argv[1], as_version=4)
 except Exception as e:
 print('{}: {}'.format(type(e).__name__, e), sys.stderr)
 return 1

 nbtb.print_dict(nbtb.nb_metadata(nb), 'Notebook metadata')

 nbtb.print_dict(nbtb.nb_cell_stats(nb)['cell_types'], 'Cell types')

 return 0

if __name__ == '__main__':
 sys.exit(main())

Here is a sample run of this script:

$ example.py test.ipynb
Notebook metadata:
 4.2 format version
 python3 kernel
 python 3.6.1 language
Cell types:
 12 code
 7 markdown
 19 total cell count

API Documentation

Adding Tools to nbtoolbelt

nbtoolbelt is set up in a modular way,
so that it easy to add new tools.

The base class Tool is
defined in
toolbaseapp.py [https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/blob/master/src/nbtoolbelt/toolbaseapp.py].

Every tool extends Tool,
and thereby inherits the common code
for argument parsing,
looping over all argmuments,
reading and writing of notebooks.
The tool only needs to override

	the constructor __init__()
[it must call super() at the beginning],

and following hook methods:

	config_tool_args_parsing() to configure the parser for tool-specific arguments
[optional; no need to call super()]

	check_and_adjust_arguments() to check and adjust tool-specific arguments, e.g. to enforce consistence
[optional; no need to call super()]

	print_tool_args() to print tool-specific arguments, called in verbose mode
[optional; no need to call super()]

	process_nb() to process one notebook, returning produced notebooks
[must NOT call super()]

	process_collected_data() to process data collected for all notebook
[must call super() at the beginning]

For a simple example, see the head tool.

	documentation: Notebook Heads

	source file: nbheadapp.py [https://gitlab.tue.nl/jupyter-projects/nbtoolbelt/blob/master/src/nbtoolbelt/nbheadapp.py]

Testing nbtoolbelt

nbtoolbelt comes with automated test cases using pytest and pytest-mock.

For the purpose of testing,
the command-line script nbtb has a hidden command base.
This command invokes the base class Tool (also see Adding Tools to nbtoolbelt),
which copies notebooks:

	notebook nb.ipynb is copied to nb-copy.ipynb

$ nbtb base test.ipynb
Copying: test.ipynb

Test cases for concrete tools need not test functionality of the base class.

Change Log

2024.1.dev0

	Update the Read-the-Docs YAML file with required build keys.

	Add generation of pytest code coverage information.

	Add some developer information.

2022.4

	Explicitly dropped support for Python 3.6.

	Improved declaration of dependencies.

	Removed use of pandas.DataFrame.append (which is deprecated), and replaced it by pandas.concat.

2022.3

	Added the record-timing option to nbrun (default True).

	Added clean-before-metadata option to clean code metadata before running.
By default, execution code metadata is cleaned before running.

	Updated nbview to support nbconvert 6 templates, by deprecating the template-file option and
adding the template option, which defaults to classic.

	Added explicit version dependencies in setup.py.

	Changed development status to production/stable,
since nbtoolbelt has been used successfully for more than 4 years in production.
In that time frame, nbtoolbelt processed over ten million notebooks.

2022.3.dev0

	Fixed and added test cases for nbrun with cell timeout.

	Removed duplicate keys in default configuration file.

	Documented nbrun interrupt-on-timeout option. Fixed typo in nbrun documentation.

	Changed nbrun default for interrupt-on-timeout option to True.

	Show nbrun interrupt-on-timeout option value in verbose mode.

	Fixed type hints for main methods of the tools.

2020.7.dev2

	Removed dependency on pypandoc and used README.md directly.

2020.7.dev1

	Mentioned dependency on pypandoc for packaging (to get the long project description from README.md).

2020.7.dev0

	Added more documentation in source code.

	Exported also version info and package name.

	In run, only set kernel name if non-empty.

	In punch, added rudimentary support for reading of chads from multiple source notebooks.

	In punch, added option --label-regex to process only marker lines with label matching given regex.

	Added more test cases for run.

	In top-level REAMDE, listed steps to add a feature to nbtoolbelt.

	Instructed Read the Docs to generate documentation in all formats.

2020.2.dev0

	Fixed inlining of attachments with names containing (quoted) spaces.

2018.2.dev1

	Improved documentation; in particular, documented JSON output for each tool.

	Report empty outputs under Code cell outputs instead of Code cell execution
using the label code cells without outputs.

	Fixed tests_require in setup.py.

2018.2.dev0

	Improved help text in punch for option allow-errors.

	Fixed json output for punch; it now includes statistics gathered during processing.

2018.1.dev0

	By default, clean does nothing (previously it would clean all outputs by default).

	Improved error reporting in punch when bad marker lines are detected.

	Added option --list (-l) to punch that list all labels and descriptions.

	Added option --allow-errors (-e) to punch that continues on marker errors.

	Tool stats now also shows counts of empty sources per cell type;
minor improvements in labeling of statistics.

	Tool view now has option template-file to select a template file other than default full.

2017.11.dev1

	Fixed code to comply with Python 3.5 and PEP 8

2017.10.dev5

	Fixed generation of documentation for Read the Docs (had to switch it to Python 3.5)

	Fixed defect in punch with frequencies when writing chads notebook but not punched notebook

	Updated README now that the source code repository has gone public

2017.10.dev4

	Was not (intended to be) released

2017.10.dev3

	Converted README to reST

	Improved problem reporting in punch

2017.10.dev2

Initial release on PyPI

2017.9.dev3

Initial private release

Source Code

	nbtoolbelt
	nbtoolbelt package

nbtoolbelt

	nbtoolbelt package
	Submodules

	nbtoolbelt.arguments module

	nbtoolbelt.cleaning module

	nbtoolbelt.config module

	nbtoolbelt.counting module

	nbtoolbelt.inline_attachments module

	nbtoolbelt.nbcatapp module

	nbtoolbelt.nbcleanapp module

	nbtoolbelt.nbdumpapp module

	nbtoolbelt.nbheadapp module

	nbtoolbelt.nbpunchapp module

	nbtoolbelt.nbrunapp module

	nbtoolbelt.nbsplitapp module

	nbtoolbelt.nbstatsapp module

	nbtoolbelt.nbvalidateapp module

	nbtoolbelt.nbviewapp module

	nbtoolbelt.notebook_io module

	nbtoolbelt.printing module

	nbtoolbelt.processing module

	nbtoolbelt.punching module

	nbtoolbelt.rendering module

	nbtoolbelt.running module

	nbtoolbelt.toolbaseapp module

	nbtoolbelt.validating module

	Module contents

nbtoolbelt package

Submodules

nbtoolbelt.arguments module

nbtoolbelt.cleaning module

nbtoolbelt.config module

nbtoolbelt.counting module

nbtoolbelt.inline_attachments module

nbtoolbelt.nbcatapp module

nbtoolbelt.nbcleanapp module

nbtoolbelt.nbdumpapp module

nbtoolbelt.nbheadapp module

nbtoolbelt.nbpunchapp module

nbtoolbelt.nbrunapp module

nbtoolbelt.nbsplitapp module

nbtoolbelt.nbstatsapp module

nbtoolbelt.nbvalidateapp module

nbtoolbelt.nbviewapp module

nbtoolbelt.notebook_io module

nbtoolbelt.printing module

nbtoolbelt.processing module

nbtoolbelt.punching module

nbtoolbelt.rendering module

nbtoolbelt.running module

nbtoolbelt.toolbaseapp module

nbtoolbelt.validating module

Module contents

Index

 _images/punch-fill.png
3

1;unch-chads :

--source

< ;
punch --fill

punch
_>

--source

< .
punch --fill

punch --chads

homework

--source

punch --fill

—2

nav.xhtml

 Table of Contents

 		
 nbtoolbelt: Tools to Work with Jupyter Notebooks

 		
 Command-Line Usage

 		
 Processing Multiple Notebooks

 		
 Common Tool Options

 		
 Help

 		
 Verbose Mode

 		
 Quiet Mode

 		
 Assert Mode

 		
 Validate Mode

 		
 Run Mode

 		
 Inplace

 		
 Write Files and Dry Run

 		
 Read Configuration File

 		
 Write JSON Output

 		
 Debug Mode

 		
 Available Tools

 		
 Examples

 		
 Notebook Validation

 		
 Options

 		
 Examples

 		
 Notebook Heads

 		
 Options

 		
 Number

 		
 Examples

 		
 Notebook Dump

 		
 Options

 		
 Examples

 		
 Notebook Statistics

 		
 Options

 		
 JSON Output

 		
 Examples

 		
 Notebook Viewing

 		
 Result File Name

 		
 Options

 		
 Template File

 		
 Template

 		
 Browswer

 		
 Wait-Delete

 		
 Notebook Catenation

 		
 Educational Use

 		
 Result File Name

 		
 Options

 		
 JSON Output

 		
 Notebook Cleaning

 		
 Result File Name

 		
 Options

 		
 JSON Output

 		
 Examples

 		
 Notebook Execution

 		
 Result File Name

 		
 Options

 		
 Dry Run

 		
 Allow Errors

 		
 Timeout

 		
 Interrupt on Timeout

 		
 Record Timing

 		
 Kernel Name

 		
 Run Path

 		
 Clean Before

 		
 Clean After

 		
 Append Cell

 		
 Streams Head

 		
 JSON Output

 		
 Examples

 		
 Notebook Splitting

 		
 Result File Names

 		
 Options

 		
 JSON Output

 		
 Examples

 		
 Notebook Punching

 		
 Result File Names

 		
 Holes and Filling

 		
 Via Tags

 		
 Via Marker Lines

 		
 Replacement Content

 		
 Educational Use

 		
 Options

 		
 Tags

 		
 Punched

 		
 Chads

 		
 Keep Marker Lines

 		
 Fill

 		
 Source

 		
 List

 		
 Allow Errors

 		
 Label Regex

 		
 JSON Output

 		
 Examples

 		
 Configuration Files

 		
 Example

 		
 Library Usage

 		
 Example

 		
 API Documentation

 		
 Adding Tools to nbtoolbelt

 		
 Testing nbtoolbelt

 		
 Change Log

 		
 2024.1.dev0

 		
 2022.4

 		
 2022.3

 		
 2022.3.dev0

 		
 2020.7.dev2

 		
 2020.7.dev1

 		
 2020.7.dev0

 		
 2020.2.dev0

 		
 2018.2.dev1

 		
 2018.2.dev0

 		
 2018.1.dev0

 		
 2017.11.dev1

 		
 2017.10.dev5

 		
 2017.10.dev4

 		
 2017.10.dev3

 		
 2017.10.dev2

 		
 2017.9.dev3

 		
 Source Code

 		
 nbtoolbelt

 		
 nbtoolbelt package

_static/file.png

_images/punch-filling-details.png
Source chad

Input hole

Punched result

source.cells[0]

source.cells[1:-1]

source.cells[-1]

input.cells[0]

m C" o

input.cells[1:-1]

input.cells[-1]

— END =

Cell types equal

input.cells[0]

Cell types differ

input.cells[0]

source.cells[1:-1]

input.cells[-1]

D

—— END

source.cells[:]

input.cells[-1]

—— END ——

_static/minus.png

_static/plus.png

